Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride

Wang Li-Peng Jiang Xin-Biao Wu Hong-Chun Fan Hui-Qing

Citation:

Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride

Wang Li-Peng, Jiang Xin-Biao, Wu Hong-Chun, Fan Hui-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nuclear design and neutronic analysis of thermal neutron reactor need high reliable thermal neutron cross sections. Uranium mononitride (UN) is a candidate fuel material for advanced power reactor with its better thermodynamics and accident tolerance. However, in thermal neutron region, reliable thermal neutron scattering cross sections are lacked for UN, which is disadvantageous to reactor physics simulations. The scattering law of the UN fuel material may impact the thermal neutron spectrum and criticality of the reactor systems. Neutron cross sections in thermal range are correlated with energy, temperature, physical and chemical properties of the scattering medium, reflecting the phonon spectra of material itself. In this paper, based on the ab initio method of quantum mechanics, phonon density of states in UN are calculated by VASP/PHONON code, and used for integral to obtain UN heat capacity at a constant volume. Adopting this new phonon density of states, NJOY/LEAPR code is used to generate S (, ) data by thermal neutron scattering theory and NJOY/THERMR utilizes these data to produce thermal scattering matrix in order to investigate thermal kernel effect of UN. Subsequently, thermal neutron scattering cross sections of UN are generated with NJOY code system. Comparison with uranium dioxide (UO2) in the traditional PWR is done. Results indicate that optimized lattice parameter are in good agreement with the database; the optical modes are well separated from the acoustic modes compared with UO2; heat capacity at a constant volume is consistent with experimental value; the inelastic and elastic cross sections of 238U in UN are lower than those of 238U in UO2. N in UN only deals with incoherent part in elastic cross sections. As the temperature increases, elastic cross sections of UN decrease while inelastic ones increase, and cross sections approach to free atom cross section at high energies. Considering the limitations of 14N, the scattering law and inelastic scattering cross sections are also under investigation using 15N in UN compound. This paper's conclusion fulfill the vacancy of thermal neutron scattering cross sections of UN, which laid a foundation for systematic study on the neutronics properties of UN fuel in the light water reactors as well as for the design of new neutron moderators and neutron filer.
      Corresponding author: Wang Li-Peng, wang0214@126.com
    [1]

    [1] Choi J, Ebbinghaus B, Meier T 2006 UCRL-TR-218931 (Lawrence Livermore National Laboratory)
    [2] Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182
    [3] Hawari A I 2014 Nucl. Data Sheets 118 172
    [4] Wang L P, Jiang X B, Zhao Z M, Chen L X 2013 Nucl. Eng. Des. 262 365
    [5] Wang L P, Jiang X B, Zhao Z M, Chen L X 2015 Proceedings of the 23 th International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 ICONE23-TP046
    [6] X-5 Monte Carlo Team 2003 LA-03-1987-M (Los Alamos National Laboratory)
    [7] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1
    [8] Zhu Y W, Hawari A I 2015 Proceedings of International Conference on Nuclear Criticality Safety Charlotte, North Carolina, September 13-17, 2015 p874
    [9] Zhu Y W, Hawari A I 2018 Proceedings of the PHYSOR 2018 Cancun, Mexico, April 22-26, 2018
    [10] Macfarlane R E, Muir D W 1994 LA-12470-M (Los Alamos National Laboratory)
    [11] Macfarlane R E, Muir D W 2012 LA-UR-12-27079 (Los Alamos National Laboratory)
    [12] Bell G I, Gasstone S (translated by Qian Li) 1970 Nuclear Reactor Theory (Beijing: Science Press) pp235-243 (in Chinese)[贝尔 G I, 格拉斯 S 著 (千里译) 1970 核反应堆理论 (北京: 原子能出版社)第235–243页]
    [13] Xie Z S, Yin B H 2004 Nuclear Reactor Physics Analysis (Beijing: Atom Press) p120 (in Chinese)[谢仲生, 尹邦华 2004 核反应堆物理分析 (北京: 原子能出版社) 第120页]
    [14] Mclane V 2009 BNL-NCS-44945-01/03-Rev (Brookhaven National Laboratory)
    [15] Mattes M, Keinert J 2005 INDC(NDS)-0470 (International Nuclear Data Committee)
    [16] MedeA_221 2017 Materials Design Inc., Angel Fire, NM, USA.
    [17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
    [18] Sears V F 1992 International Tables for Crystallography (Vol. C) Mathematical, Physical and Chemical Tables (Dordrecht: Kluwer Academic Publishers)
    [19] Koppel J U, Houston D H 1968 GA-8774 Revised (U. S. Atomic Energy Commission)
    [20] Kurosaki K, Yano K, Yamada K 2000 J. Alloys Compd. 297 1
    [21] Hayes S L, Thomas J K, Peddicord K L 1990 J. Nucl. Mater. 171 262

  • [1]

    [1] Choi J, Ebbinghaus B, Meier T 2006 UCRL-TR-218931 (Lawrence Livermore National Laboratory)
    [2] Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182
    [3] Hawari A I 2014 Nucl. Data Sheets 118 172
    [4] Wang L P, Jiang X B, Zhao Z M, Chen L X 2013 Nucl. Eng. Des. 262 365
    [5] Wang L P, Jiang X B, Zhao Z M, Chen L X 2015 Proceedings of the 23 th International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 ICONE23-TP046
    [6] X-5 Monte Carlo Team 2003 LA-03-1987-M (Los Alamos National Laboratory)
    [7] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1
    [8] Zhu Y W, Hawari A I 2015 Proceedings of International Conference on Nuclear Criticality Safety Charlotte, North Carolina, September 13-17, 2015 p874
    [9] Zhu Y W, Hawari A I 2018 Proceedings of the PHYSOR 2018 Cancun, Mexico, April 22-26, 2018
    [10] Macfarlane R E, Muir D W 1994 LA-12470-M (Los Alamos National Laboratory)
    [11] Macfarlane R E, Muir D W 2012 LA-UR-12-27079 (Los Alamos National Laboratory)
    [12] Bell G I, Gasstone S (translated by Qian Li) 1970 Nuclear Reactor Theory (Beijing: Science Press) pp235-243 (in Chinese)[贝尔 G I, 格拉斯 S 著 (千里译) 1970 核反应堆理论 (北京: 原子能出版社)第235–243页]
    [13] Xie Z S, Yin B H 2004 Nuclear Reactor Physics Analysis (Beijing: Atom Press) p120 (in Chinese)[谢仲生, 尹邦华 2004 核反应堆物理分析 (北京: 原子能出版社) 第120页]
    [14] Mclane V 2009 BNL-NCS-44945-01/03-Rev (Brookhaven National Laboratory)
    [15] Mattes M, Keinert J 2005 INDC(NDS)-0470 (International Nuclear Data Committee)
    [16] MedeA_221 2017 Materials Design Inc., Angel Fire, NM, USA.
    [17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
    [18] Sears V F 1992 International Tables for Crystallography (Vol. C) Mathematical, Physical and Chemical Tables (Dordrecht: Kluwer Academic Publishers)
    [19] Koppel J U, Houston D H 1968 GA-8774 Revised (U. S. Atomic Energy Commission)
    [20] Kurosaki K, Yano K, Yamada K 2000 J. Alloys Compd. 297 1
    [21] Hayes S L, Thomas J K, Peddicord K L 1990 J. Nucl. Mater. 171 262

  • [1] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [4] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] Jiang Wen-Can, Chen Hua, Zhang Wei-Bin. First-principles study of the phonon spectrum and heat capacity of TATB crystal. Acta Physica Sinica, 2016, 65(12): 126301. doi: 10.7498/aps.65.126301
    [7] Li Xi-Lian, Liu Gang, Du Tao-Yuan, Zhao Jing, Wu Mu-Sheng, Ouyang Chu-Ying, Xu Bo. Effect of strain on Li adsorption on silicene. Acta Physica Sinica, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [8] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [9] Jin Bao, Cai Jun, Chen Yi-Xue. Occupancy sites of uranium atom in goethite by first-principles calculation. Acta Physica Sinica, 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [10] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [11] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [12] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [13] Xu Hong-Bin, Wang Yuan-Xu. First-principles study of low-compressibility of transition-metal Tc and its nitrides TcN,TcN2,TcN3 and TcN4. Acta Physica Sinica, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [14] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [15] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [16] Ding Shao-Feng, Fan Guang-Han, Li Shu-Ti, Xiao Bing. First-principles study of the p-type doped InN. Acta Physica Sinica, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [17] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [18] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [19] Xiao Yang, Yan Xiao-Hong, Cao Jue-Xian, Ding Jian-Wen. Phonon spectrum of single-walled carbon nanotubes. Acta Physica Sinica, 2003, 52(7): 1720-1725. doi: 10.7498/aps.52.1720
    [20] LI MI. THE INTERATOMIC INTERACTION AND PHONON DISPERSIONS IN IRON. Acta Physica Sinica, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
Metrics
  • Abstract views:  7670
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  30 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回