Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super-high accurate new method of common-view time comparison based on space station

Liu Yin-Hua Li Xiao-Hui

Citation:

Super-high accurate new method of common-view time comparison based on space station

Liu Yin-Hua, Li Xiao-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of science and technology, the super high accurate time comparison techniques with several ten picoseconds or higher accuracy are required in many advanced and basic fields. The atomic clock system in the space station has better performance than that on the ground, but the traditional common-view time comparison method cannot be applied to the space station because there are some limitations. At first, the space station common-view time comparison principle aiming at several ten picoseconds accuracy is analyzed, and the sources of delay larger than 1 picosecond are considered. According to the space station common-view time comparison principle, the visibility of the space station is simulated based on several main geographical cities in China. The analysis results show that the time interval is short for ground station to observe the space station, and the common-view time interval is shorter. A more serious problem is shown that some areas cannot receive the signal send by the space station simultaneously, so the traditional common-view time comparison method is invalid when the ground stations are in these areas. Then the effect of space station orbit error is studied in theory and simulation based on the traditional method. The research result shows that the orbit error cannot be cancelled effectively by the traditional method, and the remnant orbit error is on the order of about several hundred picoseconds. These remnant orbit errors have a direct influence on the time comparison. A new asynchronous common-view time comparison method is proposed, and its principle and advantages are introduced. The geometric expression that describes the position relationship between the space station and two ground stations is proposed to find the observation time when the orbit errors can cancel completely. And the high stability of the space atomic clock and the ground atomic clock are advantaged to model and extrapolate the space-ground clock bias. The geometric position relationship and the modeling and extrapolating of the space-ground clock bias are combined together to solve the problems of time comparison accuracy and common-view blind area, because the optimized method does not require that two ground stations observe the space station simultaneously. Finally, the simulation experiments are done to validate the new method. The experimental result shows that the asynchronous common-view time comparison method is valid to realize the time comparison with the accuracy of several ten picoseconds. And it also shows that the new method is helpful in solving the problem of blind area that exists in traditional space station common-view time comparison method.
      Corresponding author: Liu Yin-Hua, liuyh@ntsc.ac.cn
    • Funds: Project supported by the "West Light" Foundation of the Chinese Academy of Sciences (Grant No. XAB2016A05) and the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018ZD XM-GY-011).
    [1]

    Kong X X, Shen W B, Zhang S J 2016 Geom. Inf. Sci. Wuhan Univ. 41 969 (in Chinese) [孔祥雪, 申文斌, 张胜军 2016 武汉大学学报·信息科学版 41 969]

    [2]

    Bai Y 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [白钰 2015 博士学位论文 (北京:清华大学)]

    [3]

    Hou X B 2015 National Conference on Information Technology and Computer Science (CITCS 2015) Shanghai, China, March 21, 2015 p377

    [4]

    Matsakis D, Defraigne P, Banerjee P 2014 Radio Sci. Bull. 351 29

    [5]

    Miao Q 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [苗菁2015 博士学位论文 (北京:清华大学)]

    [6]

    Yuan Y B, Wang B, Wang L J 2017 Chin. Phys. B 26 080601

    [7]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

    [8]

    Meynadier F, Delva P, Poncin-Latte C, Guerlin C, Wolf P 2018 https://arxiv.org/pdf/1709.06491.pdf[2018-4-27]

    [9]

    Yang W K, Meng W D, Han W B, Xie Y H, Ren X Q, Hu X G, Dong W L 2016 Prog. Astron. 34 221 (in Chinese) [杨文可, 孟文东, 韩文标, 谢永辉, 任晓乾, 胡小工, 董文丽 2016 天文学进展 34 221]

    [10]

    Zhou J P 2013 Manned Spaceflight 19 1 (in Chinese) [周建平 2013 载人航天 19 1]

    [11]

    Hobiger T, Piester D, Baron P 2013 Radio Sci. 48 131

    [12]

    Duchayne L, Wolf P, Luigi C, Hess M, Siccardi M 2008 https://arxiv.org/pdf/0901.2403v1.pdf[2018-4-27]

    [13]

    Föckersperger L, Bedrich S, Schäfer W 2004 Frequency Guildford UK, April 5-7, 2004 p385

    [14]

    Much R, Daganzo E, Feltham S, Nasca R Cacciapuoti L, Hess M P, Stringhetti L, Salomon C 2009 IEEE International Frequency Control Symposium Besancon, France, April 20-24, 2009 p199

    [15]

    Daganzo E, Feltham S, Much R, Nasca R, Stalford R, Hess M P, Stringhetti L 2009 IEEE International Frequency Control Symposium Besancon, France April 20-24, 2009 p1146

    [16]

    Delva P, Meynadier F, Poncin-Lafitte C, Laurent P, Wolf P 2013 European Frequency Prague, Czech Republic, July 21-25, 2013 p28

    [17]

    Chen X, Xu K, Yang H L 2014 Inf. Comm. 11 1 (in Chinese) [陈霄, 徐慨, 杨海亮 2014 信息通信 11 1]

    [18]

    Zhang K, Bai Y 2017 Electr. Design Eng. 25 153 [张柯, 白燕 2017 电子设计工程 25 153]

    [19]

    Kaplan E, Hegarty C J (translated by Kou Y H) 2012 Understanding GPS:Principle and Applications (Beijing:Electronic Industry Press) pp48-51 (in Chinese) [Kaplan E, Hegarty C J 著 (寇艳红 译) 2012 GPS原理与应用(北京:电子工业出版社)第48–51页]

    [20]

    Liu L 2004 Ph. D. Dissertation (Zhengzhou:Information Engineering University) (in Chinese) [刘利 2014 博士学位论文 (郑州:解放军信息工程大学)]

    [21]

    Petit G, Wolf P 1994 Astron. AstroPhys. 286 971

    [22]

    Shao J Z, Wang Y J 2012 Acta Phys. Sin. 61 110402 (in Chinese) [邵建舟, 王永久 2012 物理学报 61 110402]

    [23]

    Martin W, Live M, Achin H, Achim H 2012 NAVITEC 2012 and European Workshop on GNSS Signal and Signal Processing Noordwijk, Netherlands, December 5-7, 2012

    [24]

    Cerri L, Berthias J P, Bertiger W I, Haines B J, Gomez R, Lemoine F G, Ries J C, Willis P, Zelensky N P, Ziebart M 2010 Marine Geod. 33 379

    [25]

    Lemoine F G, Zelensky N P, Chinn D, Pavlis D E, Rawlands D D, Beckley B D, Luthcke S B, Willis P, Ziebart M, Sibthorpe A, Boy J P, Luceri V 2010 Adv. Space Res. 46 1513

  • [1]

    Kong X X, Shen W B, Zhang S J 2016 Geom. Inf. Sci. Wuhan Univ. 41 969 (in Chinese) [孔祥雪, 申文斌, 张胜军 2016 武汉大学学报·信息科学版 41 969]

    [2]

    Bai Y 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [白钰 2015 博士学位论文 (北京:清华大学)]

    [3]

    Hou X B 2015 National Conference on Information Technology and Computer Science (CITCS 2015) Shanghai, China, March 21, 2015 p377

    [4]

    Matsakis D, Defraigne P, Banerjee P 2014 Radio Sci. Bull. 351 29

    [5]

    Miao Q 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [苗菁2015 博士学位论文 (北京:清华大学)]

    [6]

    Yuan Y B, Wang B, Wang L J 2017 Chin. Phys. B 26 080601

    [7]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

    [8]

    Meynadier F, Delva P, Poncin-Latte C, Guerlin C, Wolf P 2018 https://arxiv.org/pdf/1709.06491.pdf[2018-4-27]

    [9]

    Yang W K, Meng W D, Han W B, Xie Y H, Ren X Q, Hu X G, Dong W L 2016 Prog. Astron. 34 221 (in Chinese) [杨文可, 孟文东, 韩文标, 谢永辉, 任晓乾, 胡小工, 董文丽 2016 天文学进展 34 221]

    [10]

    Zhou J P 2013 Manned Spaceflight 19 1 (in Chinese) [周建平 2013 载人航天 19 1]

    [11]

    Hobiger T, Piester D, Baron P 2013 Radio Sci. 48 131

    [12]

    Duchayne L, Wolf P, Luigi C, Hess M, Siccardi M 2008 https://arxiv.org/pdf/0901.2403v1.pdf[2018-4-27]

    [13]

    Föckersperger L, Bedrich S, Schäfer W 2004 Frequency Guildford UK, April 5-7, 2004 p385

    [14]

    Much R, Daganzo E, Feltham S, Nasca R Cacciapuoti L, Hess M P, Stringhetti L, Salomon C 2009 IEEE International Frequency Control Symposium Besancon, France, April 20-24, 2009 p199

    [15]

    Daganzo E, Feltham S, Much R, Nasca R, Stalford R, Hess M P, Stringhetti L 2009 IEEE International Frequency Control Symposium Besancon, France April 20-24, 2009 p1146

    [16]

    Delva P, Meynadier F, Poncin-Lafitte C, Laurent P, Wolf P 2013 European Frequency Prague, Czech Republic, July 21-25, 2013 p28

    [17]

    Chen X, Xu K, Yang H L 2014 Inf. Comm. 11 1 (in Chinese) [陈霄, 徐慨, 杨海亮 2014 信息通信 11 1]

    [18]

    Zhang K, Bai Y 2017 Electr. Design Eng. 25 153 [张柯, 白燕 2017 电子设计工程 25 153]

    [19]

    Kaplan E, Hegarty C J (translated by Kou Y H) 2012 Understanding GPS:Principle and Applications (Beijing:Electronic Industry Press) pp48-51 (in Chinese) [Kaplan E, Hegarty C J 著 (寇艳红 译) 2012 GPS原理与应用(北京:电子工业出版社)第48–51页]

    [20]

    Liu L 2004 Ph. D. Dissertation (Zhengzhou:Information Engineering University) (in Chinese) [刘利 2014 博士学位论文 (郑州:解放军信息工程大学)]

    [21]

    Petit G, Wolf P 1994 Astron. AstroPhys. 286 971

    [22]

    Shao J Z, Wang Y J 2012 Acta Phys. Sin. 61 110402 (in Chinese) [邵建舟, 王永久 2012 物理学报 61 110402]

    [23]

    Martin W, Live M, Achin H, Achim H 2012 NAVITEC 2012 and European Workshop on GNSS Signal and Signal Processing Noordwijk, Netherlands, December 5-7, 2012

    [24]

    Cerri L, Berthias J P, Bertiger W I, Haines B J, Gomez R, Lemoine F G, Ries J C, Willis P, Zelensky N P, Ziebart M 2010 Marine Geod. 33 379

    [25]

    Lemoine F G, Zelensky N P, Chinn D, Pavlis D E, Rawlands D D, Beckley B D, Luthcke S B, Willis P, Ziebart M, Sibthorpe A, Boy J P, Luceri V 2010 Adv. Space Res. 46 1513

  • [1] Liu Yun, Wang Wen-Hai, He De-Jing, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Laser system of cold atom optical clock in China Space Station. Acta Physica Sinica, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [2] Liu Chao, Zhang Ai-Bing, Sun Yue-Qiang, Kong Ling-Gao, Wang Wen-Jing, Guan Yi-Bing, Wang Yong-Song, Zheng Xiang-Zhi, Tian Zheng, Gao Jun. Plasma in-situ imaging detection technology on China’s Space Station Wentian module. Acta Physica Sinica, 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [3] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Physical process and characteristics for rapid charging events at international space station. Acta Physica Sinica, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [4] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Mechanism of rapid-charging events for international space station. Acta Physica Sinica, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [5] Bian Bao-Min, Lai Xiao-Ming, Yang Lin, Li Zhen-Hua, He An-Zhi. Free particle geodesic affine parameter time-space coordinate systems. Acta Physica Sinica, 2012, 61(17): 170401. doi: 10.7498/aps.61.170401
    [6] Shao Jian-Zhou, Wang Yong-Jiu. Acceleration effect in the gravitational field of black hole involving a global monopole. Acta Physica Sinica, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [7] Bian Bao-Min, Lai Xiao-Ming, Yang Ling, Li Zhen-Hua, He An-Zhi. Variable space scale factor spherical coordinates and time-space metric. Acta Physica Sinica, 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [8] Xiang Mao-Huai, Chen Ju-Hua, Wang Yong-Jiu. Accretion and radiation in black hole with a global monopole. Acta Physica Sinica, 2011, 60(9): 090401. doi: 10.7498/aps.60.090401
    [9] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [10] Wang Yong-Jiu, Li Ai-Gen, Gong Tian-Xi, Chen Ju-Hua. A kind of singularity-free cosmology model. Acta Physica Sinica, 2010, 59(2): 712-715. doi: 10.7498/aps.59.712
    [11] Chen Guang. A non-collapsing solution of a uniform-density ball of dust in the discrete spacetime. Acta Physica Sinica, 2005, 54(7): 2971-2976. doi: 10.7498/aps.54.2971
    [12] WANG YONG-JIU, TANG ZHI-MING. THE STABILITY OF A KIND OF COSMOLOGICAL MODEL. Acta Physica Sinica, 2001, 50(10): 1829-1832. doi: 10.7498/aps.50.1829
    [13] ZHONG MING-QIAN. ESTIMATION OF POST-NEWTONIAN APPROXIMATION OF GRAVITY THAT AFFECTS SATELLITES OF PLANET. Acta Physica Sinica, 2001, 50(12): 2497-2500. doi: 10.7498/aps.50.2497
    [14] TANG ZHI-MING, WANG YONG-JIU. RADIATING OF ACCELERATING CHARGE IN GENERAL RELATIVITY. Acta Physica Sinica, 1999, 48(4): 561-565. doi: 10.7498/aps.48.561
    [15] TAO BI-XIU, TAO BI-YOU. GENERAL-RELATIVISTIC “WALL OF GALAXIES”. Acta Physica Sinica, 1996, 45(7): 1091-1099. doi: 10.7498/aps.45.1091
    [16] Duan Yi-Shi, Feng Shi-Xiang. . Acta Physica Sinica, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [17] Liu Wen-sen. LOCALISATION OF ENERGY IN GENERAL RELATIVITY. Acta Physica Sinica, 1983, 32(4): 515-519. doi: 10.7498/aps.32.515
    [18] CHU YAO-QUAN, CHEN FU-ZHEN, FANG LI-ZHI. STRUCTURE AND STABILITY OF POLYTROPIC FLUID SPHERES WITH NEGATIVE INDEX WITHIN THE GENERAL RELATIVISTIC THEORY. Acta Physica Sinica, 1980, 29(1): 64-72. doi: 10.7498/aps.29.64
    [19] ZHU SI-CHANG. GRAVITATIONAL MASS DEFECT AND ROTATIONAL MASS EFFECT FOR A ROTARY SOLID SPHERE IN GENERAL THEORY OF RELATIVITY. Acta Physica Sinica, 1979, 28(6): 894-900. doi: 10.7498/aps.28.894
    [20] GUO HAN-YING, WU YONG-SHI, LI GEN-DAO. THE SPINOR FORMALISM AND THE COMPLEX-VECTOR FORMALISM OF GENERAL RELATIVITY. Acta Physica Sinica, 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
Metrics
  • Abstract views:  6689
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2018
  • Accepted Date:  25 June 2018
  • Published Online:  05 October 2018

/

返回文章
返回