Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear absorption, nonlinear scattering, and optical limiting properties of carbon nanotube/molybdenum diselenide organic glass

Sun Yue Qu Bin Quan Bao-Gang

Citation:

Nonlinear absorption, nonlinear scattering, and optical limiting properties of carbon nanotube/molybdenum diselenide organic glass

Sun Yue, Qu Bin, Quan Bao-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Because MoSe2 has broadband saturable absorption, and higher nonlinear refractive index. Compared with MoS2, thin-layered MoSe2 possesses very attractive properties, including narrow bandgap, low optical absorption coefficient, and large spin-splitting energy at the top of the valence band. The narrow bandgap and low optical absorption coefficient could make MoSe2 more applicable than MoS2. And the tunable excitation photoelectric effecthas great potential applications in the fields of photoluminescence, phototransistor, solar cells, nonlinear optics and other aspects. However, pure MoSe2 has high photogenerated recombination rate, thus limiting its applications in some optical fields. By designing nanocomposites of MoSe2, the photogenerated recombination rate of these materials can be reduced and their application field can be broadened. In this work, MoSe2 nanocomposites are prepared by simple methods. The two-dimensional layered MoSe2 nanosheets are combined with nanorods. By integrating the surface effect, small size effect and interfacial effect of CNT, the optical nonlinearity and optical limiting performance of MoSe2 composites are improved. The CNT/MoSe2 composite nanomaterials are first synthesized based on narrower band gap and lower light absorption coefficient of MoS2 than those of MoSe2 by growing MoSe2 nanoparticles on the surface of CNT through a solvothermal method, and then is dispersed in methyl methacrylate (MMA) to prepare an organic glass by a casting method, and the MMA is polymerized into poly (methyl methacrylate) (PMMA). The nonlinear absorption (NLA), nonlinear scattering (NLS) and optical limiting (OL) properties of the CNT/MoSe2/PMMA organic glass are studied by the modified Z-scan technique for the first time. The CNT/MoSe2/PMMA organic glass exhibits the saturable absorption (SA) and a changeover from SA to reverse saturable absorption by adjusting input energy. The experimental results show that the CNT/MoSe2/PMMA plexiglass exhibits better anti-saturation absorption and higher optical limiting properties than MoSe2/PMMA and CNT/PMMA plexiglass. Besides, the NLA and OL properties of the CNT/MoSe2/PMMA organic glass are enhanced compared with CNT/PMMA and MoSe2/PMMA organic glasses, which can be attributed to the existence of the C=C double bonds in CNTs, the layered structure of MoSe2 nanosheets, and the interfacial charge transfer between CNTs and MoSe2. And the results demonstrate that the CNT/MoSe2/PMMA organic glass is very promising for optical devices such as optical limiters and mode-locked/Q-switched lasers.
    [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Dong N N, Li Y X, Feng Y Y, Zhang X F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646

    [3]

    Luo Z Q, Li Y Y, Zhong M, Huang Y Z, Wan X J, Peng J, Weng J 2015 Photon. Res. 3 A79

    [4]

    Hak K D, Lim D, Kore J 2015 Phys. Soc. 6 816

    [5]

    Weismann M, Panoiu N C 2016 Phys. Rew. B 94 035435

    [6]

    Wang W H, Wu Y L, Wu Q, Hua J J, Zhao J M 2016 Sci. Rep. 6 22072

    [7]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 672

    [8]

    Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A, Zhao J M 2008 Appl. Phys. Lett. 92 151109

    [9]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [10]

    Wang K P, Feng Y Y, Chang C X, Zhan J X, Wang C W, Zhao Q Z, Coleman J N, Zhang L, Blau W J, Wang J 2014 Nanoscale 6 10530

    [11]

    Tai P T, Pan S D, Wang Y G, Tang J 2011 Opt. Commun. 284 1303

    [12]

    Jena K C, Bisht P B, Shaijumon M M, Ramaprabhu S 2007 Opt. Commun. 273 153

    [13]

    Wang J, Früchtl D, Blau W J 2010 Opt. Commun. 283 464

    [14]

    Qu B, Ouyang Q Y, Yu X B, Luo W H, Qi L H, Chen Y J 2015 Phys. Chem. Chem. Phys. 17 6036

    [15]

    Ouyang Q Y, Yu H L, Xu Z, Zhang Y, Li C Y, Qi L H, Chen Y J 2013 Appl. Phys. Lett. 102 031912

    [16]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113

    [17]

    Hopkins A R, Labatete-Goeppinger A C, Kim H, Katzman H A 2016 Carbon 107 77

    [18]

    Saha A, Jana M, Khanra P, Samanta P, Koo H, Murmu N C, Kuila T 2015 ACS Appl. Mater. Interfaces 7 14211

    [19]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760

    [20]

    Kurian P A, Vijayan C, Sathiyamoorthy K, SuchandSandeep C S, Philip R 2007 Nanoscale Res. Lett. 2 561

  • [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Dong N N, Li Y X, Feng Y Y, Zhang X F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646

    [3]

    Luo Z Q, Li Y Y, Zhong M, Huang Y Z, Wan X J, Peng J, Weng J 2015 Photon. Res. 3 A79

    [4]

    Hak K D, Lim D, Kore J 2015 Phys. Soc. 6 816

    [5]

    Weismann M, Panoiu N C 2016 Phys. Rew. B 94 035435

    [6]

    Wang W H, Wu Y L, Wu Q, Hua J J, Zhao J M 2016 Sci. Rep. 6 22072

    [7]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 672

    [8]

    Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A, Zhao J M 2008 Appl. Phys. Lett. 92 151109

    [9]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [10]

    Wang K P, Feng Y Y, Chang C X, Zhan J X, Wang C W, Zhao Q Z, Coleman J N, Zhang L, Blau W J, Wang J 2014 Nanoscale 6 10530

    [11]

    Tai P T, Pan S D, Wang Y G, Tang J 2011 Opt. Commun. 284 1303

    [12]

    Jena K C, Bisht P B, Shaijumon M M, Ramaprabhu S 2007 Opt. Commun. 273 153

    [13]

    Wang J, Früchtl D, Blau W J 2010 Opt. Commun. 283 464

    [14]

    Qu B, Ouyang Q Y, Yu X B, Luo W H, Qi L H, Chen Y J 2015 Phys. Chem. Chem. Phys. 17 6036

    [15]

    Ouyang Q Y, Yu H L, Xu Z, Zhang Y, Li C Y, Qi L H, Chen Y J 2013 Appl. Phys. Lett. 102 031912

    [16]

    Kim K, Lee J U, Nam D, Cheong H 2016 ACS Nano 10 8113

    [17]

    Hopkins A R, Labatete-Goeppinger A C, Kim H, Katzman H A 2016 Carbon 107 77

    [18]

    Saha A, Jana M, Khanra P, Samanta P, Koo H, Murmu N C, Kuila T 2015 ACS Appl. Mater. Interfaces 7 14211

    [19]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760

    [20]

    Kurian P A, Vijayan C, Sathiyamoorthy K, SuchandSandeep C S, Philip R 2007 Nanoscale Res. Lett. 2 561

  • [1] Wu Shi-Man, Tao Si-Min, Ji Ai-Chuang, Guan Shao-Hang, Xiao Jian-Rong. Influence of selenization temperature on structure and optical band gap of MoSe2 thin film. Acta Physica Sinica, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] Huang Duo-Hui, Wan Ming-Jie, Yang Jun-Sheng. Mmolecular dynamics study of glass transition and nonlinear mechanical behavior of poly(methyl methacrylate)/carbon nanotubes nanocomposites. Acta Physica Sinica, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [3] Cai Di, Li Jing, Jiao Nai-Xun. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials. Acta Physica Sinica, 2019, 68(10): 100502. doi: 10.7498/aps.68.20182068
    [4] Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang. Synthesis and photoluminescence property of hexangular star MoSe2 bilayer. Acta Physica Sinica, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] Liu Fang, Li Yun-Xiang, Huang Yi-Dong. Nanolithography based on two-surface-plasmon-polariton-absorption. Acta Physica Sinica, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [6] Wang Bi-Ben, Zhu Ke, Wang Qiang. Structures and photoluminescence properties of Se and SeMo2 nanoflakes. Acta Physica Sinica, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [7] Wang Fei-Feng, Zhang Pei-Hong, Gao Ming-Ze. Research on the nonlinear conductivity characteristics of nano-SiC/silicone rubber composites. Acta Physica Sinica, 2014, 63(21): 217803. doi: 10.7498/aps.63.217803
    [8] Gan Ping, Gu Min, Qing Sheng-Lan, Xian Xiao-Dong. Absorption and nonlinear optical properties of Te/TeO2-SiO2 composite films. Acta Physica Sinica, 2013, 62(7): 078101. doi: 10.7498/aps.62.078101
    [9] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [10] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. The optical and nonlinear optical properties of Au:TiO2 and Au:Al2O3 composite films. Acta Physica Sinica, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [11] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of Ag:Bi2O3 composite films. Acta Physica Sinica, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
    [12] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [13] Yi Wen-Hui, Xu You-Long, Feng Wei, Wu Hong-Cai, Gao Chao. Third-order nonlinear response of conjugated polymer coated carbon nanotubes. Acta Physica Sinica, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [14] Feng Wei, Yi Wen-Hui, Feng Yi-Yu, Wu Zi-Gang, Zhang Zhen-Zhong. In-situ polymerization and third-order nonlinear optical properties of polyaniline/carbon natotube composite. Acta Physica Sinica, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [15] Wang Gang, Duan Mu-Yun, Cui Yi-Ping, Zhang Yu, Liu Mi. Study on the influence on the characteristic of the second-order nonlinear optics by using aggregation of silver nanoparticles. Acta Physica Sinica, 2005, 54(1): 144-148. doi: 10.7498/aps.54.144
    [16] Liu Fa-Min, Wang Tian-Min, Zhang Li-De. . Acta Physica Sinica, 2002, 51(1): 183-186. doi: 10.7498/aps.51.183
    [17] QU SHI-LIANG, SONG YING-LIN, DU CHI-MIN, WANG YU-XIAO, GAO YA-CHEN, LIU SHU-TIAN, LI YU-LIANG, ZHU DAO-BEN. OPTICAL NONLINEARITIES IN TWO NOVEL NANOCOMPOSITES BASED ON FULLERENE C60 STRUCTURED SYSTEM WITH GOLD NANOPARTICLES. Acta Physica Sinica, 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
    [18] . Acta Physica Sinica, 2000, 49(2): 324-327. doi: 10.7498/aps.49.324
    [19] YU BAO-LONG, BU HONG-JIAN, WU XIAO-CHUN, ZHANG GUI-LAN, TANG GUO-QING, CHEN WEN-JU, ZHU CONG-SHAN, GAN FU-XI. NONLINEAR OPTICAL PROPERTIES OF In2O3 NANOPARTICLES. Acta Physica Sinica, 1999, 48(2): 320-325. doi: 10.7498/aps.48.320
    [20] YU BAO-LONG, ZHANG GUI-LAN, TANG GUO-QING, WU XIAO-CHUN, CHEN WEN-JU, YANG BIN-ZHOU. STUDYING ON NONLINEAR OPTICAL PROPERTIES OF Fe2O3 NANOPARTICLES IN COLLOIDAL SOLUTION. Acta Physica Sinica, 1997, 46(3): 579-586. doi: 10.7498/aps.46.579
Metrics
  • Abstract views:  6741
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2018
  • Accepted Date:  29 September 2018
  • Published Online:  05 December 2018

/

返回文章
返回