搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米石墨烯片-正十八烷复合相变材料制备及热物性研究

蔡迪 李静 焦乃勋

引用本文:
Citation:

纳米石墨烯片-正十八烷复合相变材料制备及热物性研究

蔡迪, 李静, 焦乃勋

Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials

Cai Di, Li Jing, Jiao Nai-Xun
PDF
HTML
导出引用
  • 本文分别制备了纳米石墨烯片质量分数为0%, 0.5%, 1%, 1.5%, 2%的纳米石墨烯片-正十八烷复合相变材料, 并通过扫描电镜测试、红外光谱分析、差示扫描量热实验及导热分析等实验对其形貌结构及热物性进行表征和研究. 实验表明本文制备的纳米石墨烯-正十八烷复合相变材料具有很好的相变稳定性; 当纳米石墨烯片的质量分数达到2%时, 复合相变材料的导热系数相对于纯十八烷高出了89.4%.
    Latent heat storage mainly uses the latent heat of phase change material (PCM) to realize thermal energy storage and utilization, which is the most important thermal energy storage method at present. However, most of PCMs have the disadvantage of low thermal conductivity, which greatly restricts the thermal response rate and system efficiency of the thermal energy storage system. With the development of nanotechnology, it is expected to improve the thermal conductivity of traditional PCMs by adding high thermal conductivity nanoparticles. In this paper, a novel two-dimensional carbon nanomaterial, graphene is selected as an additive for PCM. In this paper, graphene nanoplatelets-octadecane phase change composite materials are prepared with a two-step method and the mass fractions of graphene nanoplatelets are 0%, 0.5%, 1%, 1.5%, and 2%. Their microstructures, morphologies and thermophysical properties are characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC), and thermal conductivity analysis. The effects of the addition quantity of graphene nanoplatelets on the phase transition temperature, enthalpy, specific heat capacity, thermal conductivity and thermal stability of the composite PCM are compared. The experimental results show that the dispersion stability of the graphene nanoplatelets in the composite system is greatly improved by the addition of dispersant, and the system does not produce obvious agglomeration nor sedimentation after multiple phase transformation cycles. The graphene nanoplatelets still maintain good lamellar structure and homogeneous dispersion in the n-octadecane matrix, and no chemical reaction occurs in the composite process. Comparing with the n-octadecane, the melting point of the composite phase change material decreases slightly, and the freezing point increases slightly. With the increase of graphene nanoplatelets, the latent heat value of graphene nanoplatelets-octadecane composite phase change material decreases gradually. For the composite phase change material with 2.0 wt.% graphene nanoplatelets, the melting enthalpy and solidified enthalpy are reduced by 6.01% and 7.35%, respectively. When the mass fractions of graphene nanoplatelets are 0.5%, 1%, 1.5%, and 2%, the thermal conductivity values of phase change composite materials are nearly 32.4%, 77.4%, 83.1%, and 89.4% higher than the thermal conductivity value of pure octadecane, respectively. Comparing with the significant increase in thermal conductivity, the addition of graphene nanoplatelets has little effect on the phase transition temperature and latent heat of PCM, and still exhibits the good heat storage performance.
      通信作者: 李静, lj202740@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51606017)、中国博士后科学基金(批准号: 2017M612906)和重庆市博士后科研项目(批准号: Xm2016068)资助的课题.
      Corresponding author: Li Jing, lj202740@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51606017), the China Postdoctoral Science Foundation (Grant No. 2017M612906), and the Postdoctoral Science Foundation of Chongqing, China (Grant No. Xm2016068).
    [1]

    Lin Y X, Alva G, Fang G Y 2018 Renewable Sustainable Energy Rev. 82 2730Google Scholar

    [2]

    Liu L K, Su D, Tang Y J, Fang G Y 2016 Renewable Sustainable Energy Rev. 62 305Google Scholar

    [3]

    Tay N H S, Liu M, Belusko M, Bruno F 2016 Renewable Sustainable Energy Rev. 75 264

    [4]

    Alva G, Lin Y X, Fang G Y 2018 Energy 144 341Google Scholar

    [5]

    Reddy K S, Mudgal V, Mallick T K 2018 J. Energy Storage 15 205Google Scholar

    [6]

    Jaguemont J, Omar N, Den Bossche P V, Mierlo J V 2017 Appl. Therm. Eng. S 1359-4311 31976

    [7]

    Li Y T, Du Y X, Xu T, Wu Huijun, Zhou X Q, Ling Z Y, Zhang Z G 2018 Appl. Therm. Eng. 131 766Google Scholar

    [8]

    Giro-Paloma J, Martinez M, Cabeza L F, Fernandez A L 2016 Renewable Sustainable Energy Rev. 53 1059Google Scholar

    [9]

    Jamekhorshid A, Sadrameli S M, Farid M 2014 Renewable Sustainable Energy Rev. 31 531Google Scholar

    [10]

    Ibrahim N I, Al-Sulaiman F A, Rahman S, Yilbas B S, Sahin A Z 2017 Renewable Sustainable Energy Rev. 74 26Google Scholar

    [11]

    Mohamed N H, Soliman F S, El Maghraby H, Moustfa Y M 2017 Renewable Sustainable Energy Rev. 70 1052Google Scholar

    [12]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666Google Scholar

    [13]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P 2008 Appl. Phys. Lett. 92 1148

    [14]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F 2008 Nano Lett. 8 902Google Scholar

    [15]

    Chae H K, Siberio-Perez D Y, Kim J 2004 Nature 427 523Google Scholar

    [16]

    Fu Y X, He Z X, Mo D C, Lu S S 2014 Int. J. Therm. Sci. 86 276Google Scholar

    [17]

    Mehrali M, Latibari S T, Mehrali M, Mahlia T M I, Metselaar H S C, Naghavi M S, Sadeghinezhad E, Akhiani A R 2013 Appl. Therm. Eng. 61 633Google Scholar

    [18]

    Amin M, Putra N, Kosasih E A, Prawiro E, Luanto R A, Mahlia T M I 2017 Appl. Therm. Eng. 112 273Google Scholar

    [19]

    Liu X, Rao Z 2017 Thermochim. Acta 647 15Google Scholar

    [20]

    周艳, 张金辉, 王艳, 路海滨, 李庆领 2013 材料导报 27 8Google Scholar

    Zhou Y, Zhang J H, Wang Y, Lu H B, Li Q L 2013 Mater. Rev. 27 8Google Scholar

    [21]

    吴炳洋, 郑帼, 孙玉, 陈旭 2016 高分子学报 2 242

    Wu B Y, Zheng G, Sun Y, Chen X 2016 Acta Polym. Sin. 2 242

    [22]

    Galli G, Sorella S, Spanu L 2009 Physics 103 196401

    [23]

    Holmes N S, Morawska L 2006 Atmos. Environ. 40 5902Google Scholar

  • 图 1  未添加分散剂与添加不同种类分散剂的复合相变材料(GNP 0.5 wt.%)分散稳定性 (a)初始状态; (b)静置15 min; (c)静置30 min; (d)凝固状态

    Fig. 1.  Dispersion stability of composite phase change material (GNP 0.5 wt.%) without addition of dispersant and with adding different kinds of dispersants: (a) Initial state; (b) let the mixture stand for 15 min; (c) let the mixture stand for 30 min; (c) solidification state.

    图 2  复合相变材料(GNP 0.5 wt.%)经历不同次数熔化-凝固循环后的状态 (a) 5次; (b) 10次

    Fig. 2.  Statuses of composite phase change material (GNP 0.5 wt.%) after different melting-solidification cycles: (a) After 5 cycles; (b) after 10 cycles.

    图 3  含有不同纳米石墨烯片质量分数的复合相变材料

    Fig. 3.  Composite phase change materials with different mass fractions of graphene nanoplatelets.

    图 4  微观形貌结构 (a)纳米石墨烯片(× 5000); (b)纳米石墨烯片(× 25000); (c)复合相变材料(× 5000); (d)复合相变材料(× 20000)

    Fig. 4.  The microstructure and morphology of (a) graphene nanoplatelets (× 5000); (b) graphene nanoplatelets (× 25000); (c) composite phase change materials (× 5000); (d) composite phase change materials (× 20000).

    图 5  正十八烷与2.0 wt.%纳米石墨烯片复合相变材料的FTIR光谱

    Fig. 5.  FTIR spectra of n-octadecane and 2.0 wt.% graphene nanoplatelets composite phase change materials.

    图 6  正十八烷及其复合相变材料的DSC曲线

    Fig. 6.  The DSC curves of n-octadecane and composite phase change materials.

    图 8  相变前后的平均比热容

    Fig. 8.  Average specific heat capacity before and after phase transition.

    图 7  复合相变材料比热容随温度变化关系

    Fig. 7.  Temperature dependence of specific heat capacity of composite phase change materials.

    图 9  不同质量分数的纳米石墨烯片复合相变材料在20 ℃时的热扩散系数及导热系数

    Fig. 9.  Thermal diffusion coefficient and thermal conductivity of graphene nanoplatelets composite phase change materials with different mass fractions at 20 ℃.

    表 1  正十八烷及其复合相变材料熔化过程的相变温度及相变焓

    Table 1.  Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during melting process.

    材料 起始温度 Tms/℃ 峰值 Tmp /℃ 终止温度 Tme/℃ 相变焓 Hm/J·g–1
    正十八烷 28.1 33.3 35.9 241.4
    0.5%纳米石墨烯片/正十八烷 27.9 33.5 36.5 237.4
    1.0%纳米石墨烯片/正十八烷 27.9 32.9 36.0 237.0
    1.5%纳米石墨烯片/正十八烷 27.5 33.4 36.2 234.8
    2.0%纳米石墨烯片/正十八烷 27.9 33.3 35.7 226.9
    下载: 导出CSV

    表 2  正十八烷及其复合相变材料凝固过程的相变温度及相变焓

    Table 2.  Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during solidification process.

    材料 起始温度 Tss/℃ 峰值 Tsp/℃ 终止温度 Tse/℃ 相变焓 Hs /J·g–1
    正十八烷 26.1 21.5 19.8 –240.7
    0.5%纳米石墨烯片/正十八烷 26.3 20.9 19.0 –237.8
    1.0%纳米石墨烯片/正十八烷 26.5 21.1 19.3 –237.2
    1.5%纳米石墨烯片/正十八烷 26.4 21.5 20.0 –233.5
    2.0%纳米石墨烯片/正十八烷 26.5 21.1 19.5 –223.0
    下载: 导出CSV
  • [1]

    Lin Y X, Alva G, Fang G Y 2018 Renewable Sustainable Energy Rev. 82 2730Google Scholar

    [2]

    Liu L K, Su D, Tang Y J, Fang G Y 2016 Renewable Sustainable Energy Rev. 62 305Google Scholar

    [3]

    Tay N H S, Liu M, Belusko M, Bruno F 2016 Renewable Sustainable Energy Rev. 75 264

    [4]

    Alva G, Lin Y X, Fang G Y 2018 Energy 144 341Google Scholar

    [5]

    Reddy K S, Mudgal V, Mallick T K 2018 J. Energy Storage 15 205Google Scholar

    [6]

    Jaguemont J, Omar N, Den Bossche P V, Mierlo J V 2017 Appl. Therm. Eng. S 1359-4311 31976

    [7]

    Li Y T, Du Y X, Xu T, Wu Huijun, Zhou X Q, Ling Z Y, Zhang Z G 2018 Appl. Therm. Eng. 131 766Google Scholar

    [8]

    Giro-Paloma J, Martinez M, Cabeza L F, Fernandez A L 2016 Renewable Sustainable Energy Rev. 53 1059Google Scholar

    [9]

    Jamekhorshid A, Sadrameli S M, Farid M 2014 Renewable Sustainable Energy Rev. 31 531Google Scholar

    [10]

    Ibrahim N I, Al-Sulaiman F A, Rahman S, Yilbas B S, Sahin A Z 2017 Renewable Sustainable Energy Rev. 74 26Google Scholar

    [11]

    Mohamed N H, Soliman F S, El Maghraby H, Moustfa Y M 2017 Renewable Sustainable Energy Rev. 70 1052Google Scholar

    [12]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666Google Scholar

    [13]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P 2008 Appl. Phys. Lett. 92 1148

    [14]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F 2008 Nano Lett. 8 902Google Scholar

    [15]

    Chae H K, Siberio-Perez D Y, Kim J 2004 Nature 427 523Google Scholar

    [16]

    Fu Y X, He Z X, Mo D C, Lu S S 2014 Int. J. Therm. Sci. 86 276Google Scholar

    [17]

    Mehrali M, Latibari S T, Mehrali M, Mahlia T M I, Metselaar H S C, Naghavi M S, Sadeghinezhad E, Akhiani A R 2013 Appl. Therm. Eng. 61 633Google Scholar

    [18]

    Amin M, Putra N, Kosasih E A, Prawiro E, Luanto R A, Mahlia T M I 2017 Appl. Therm. Eng. 112 273Google Scholar

    [19]

    Liu X, Rao Z 2017 Thermochim. Acta 647 15Google Scholar

    [20]

    周艳, 张金辉, 王艳, 路海滨, 李庆领 2013 材料导报 27 8Google Scholar

    Zhou Y, Zhang J H, Wang Y, Lu H B, Li Q L 2013 Mater. Rev. 27 8Google Scholar

    [21]

    吴炳洋, 郑帼, 孙玉, 陈旭 2016 高分子学报 2 242

    Wu B Y, Zheng G, Sun Y, Chen X 2016 Acta Polym. Sin. 2 242

    [22]

    Galli G, Sorella S, Spanu L 2009 Physics 103 196401

    [23]

    Holmes N S, Morawska L 2006 Atmos. Environ. 40 5902Google Scholar

  • [1] 陈韬, 江普庆. 揭示热反射实验中热物性参数的本征关系. 物理学报, 2024, 73(23): 230202. doi: 10.7498/aps.73.20241369
    [2] 丁宁, 倪晓东, 田付阳. Laves-Co2(Hf Ta)合金的相稳定性及热物性. 物理学报, 2024, 73(12): 126102. doi: 10.7498/aps.73.20240143
    [3] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石. 物理学报, 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [4] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [5] 吕浩翔, 冯黛丽, 冯妍卉, 张欣欣. 掺杂石墨烯纳米片对硝酸钠相变特性的影响及机理. 物理学报, 2022, 71(15): 158801. doi: 10.7498/aps.71.20220354
    [6] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [7] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [8] 李静, 李绍伟, 蔡迪, 廖燕宁. 石墨烯气凝胶复合相变材料的热物性研究. 物理学报, 2021, 70(4): 040503. doi: 10.7498/aps.70.20201499
    [9] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [10] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [11] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究. 物理学报, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [12] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [13] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] 郭泽堃, 田颜, 甘海波, 黎子娟, 张彤, 许宁生, 陈军, 陈焕君, 邓少芝, 刘飞. 硼烯和碱土金属硼化物二维纳米材料的制备、结构、物性及应用研究. 物理学报, 2017, 66(21): 217702. doi: 10.7498/aps.66.217702
    [15] 王桂强, 侯硕, 张娟, 张伟. 氮掺杂石墨烯纳米片的制备及其电化学性能. 物理学报, 2016, 65(17): 178102. doi: 10.7498/aps.65.178102
    [16] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [17] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [18] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [19] 范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐. 石墨烯/银纳米复合材料的制备及其影响因素研究. 物理学报, 2013, 62(14): 148101. doi: 10.7498/aps.62.148101
    [20] 余 雷, 余建祖, 王永坤. SiNx薄膜热物性参数实验测量与分析研究. 物理学报, 2004, 53(2): 401-405. doi: 10.7498/aps.53.401
计量
  • 文章访问数:  13873
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-03-22
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回