搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂石墨烯纳米片的制备及其电化学性能

王桂强 侯硕 张娟 张伟

引用本文:
Citation:

氮掺杂石墨烯纳米片的制备及其电化学性能

王桂强, 侯硕, 张娟, 张伟

Preparation and electrochemical performance of nitrogen-doped graphene nanoplatelets

Wang Gui-Qiang, Hou Shuo, Zhang Juan, Zhang Wei
PDF
导出引用
  • 以石墨片为原料,在氮气气氛下,通过机械针磨法制备了氮掺杂石墨烯纳米片. 扫描电子显微镜和比表面积分析表明机械针磨过程可以有效地将大尺寸石墨片破碎成石墨烯纳米片. 在石墨片的破碎过程中,会引起C-C键的破坏. 因此,在破坏的边缘位置能够产生碳活性点. 这些碳活性点可以与氮反应实现氮元素的掺杂. X射线光电子能谱分析表明碳活性点与氮反应使氮元素掺入石墨烯结构边缘,形成吡咯型氮和吡啶型氮. 电化学阻抗谱分析表明所制备的氮掺杂石墨烯纳米片对I3-还原反应具有较高的电催化活性,循环伏安与恒流充放电测试表明氮掺杂石墨烯纳米片具有较好的电容性能. 较高的比表面积和边缘氮掺杂结构是氮掺杂石墨烯纳米片具有优异电化学性能的主要原因. 因此,氮掺杂石墨烯纳米片可以应用于染料敏化太阳能电池对电极和超级电容器电极.
    The highly desirable properties of nitrogen-doped graphene nanomaterial, such as high surface area, good hydrophilicity, and enhanced electrocatalytic activity and charge-transfer property, make it an ideal candidate for electrode materials used in the field of energy conversion and storage. Up to now, methods of synthesizing nitrogen-doped graphene nanomaterials mainly include chemical vapor deposition, thermal annealing graphite oxide with NH3, and graphene treated with nitrogen plasma. However, these methods of producing the nitrogen-doped graphene nanomaterials are either costly for practical applications or involving environmently hazardous reagents, and the full potentials of nitrogen-doped graphene materials are hard to achieve without scalable production at low cost. Therefore, a simple and cost-effective method of producing the nitrogen-doped graphene nanomaterial is desirable. In this paper, nitrogen-doped graphene nanoplatelets are prepared by a simple and eco-friendly mechanochemical pin-grinding process under N2 atmosphere through using natural graphite flake as the precursor at room temperature. The as-prepared nitrogen-doped graphene sample is characterized by X-ray photoelectron spectroscopy, Raman spectra, nitrogen adsorption, SEM, and TEM. The images of SEM and BET (Brunauer-Emmett-Teller) surface area measurements demonstrate an effective and spontaneous delamination of the starting graphite into small graphene nanoplatelets even in the solid state by pin-grinding process. The cleavage of graphitic C-C bonds by pin grinding creates numerous active carbon species, which can directly react with nitrogen. X-ray photoelectron spectroscopy measurements indicate that the active carbon species react with nitrogen to form the aromatic C-N in pyrazole and pyridazine rings at the fresh broken edges of the graphitic frameworks. Both pyrrolic nitrogen and pyridinic nitrogen are at the edge of carbon framework, which can provide chemically active sites to improve the electrochemical performance of carbon material. Electrochemical impedance spectroscopy indicvates that nitrogen-doped graphene nanoplatelets possess excellent electrocatalytic activity for the redox reaction between iodide and triiodide ions, used in dye-sensitized solar cells. The charge-transfer resistance of nitrogen-doped graphene nanoplatelet electrode is 1.1 cm2, which is comparable to that of Pt electrode. The capacitance properties of the as-prepared nitrogen-doped graphene nanoplatelets are also investigated. Cyclic voltammetry and galvanostatic charge-discharge curves show that nitrogen-doped graphene nanoplatelets have good capacitive performance. At a current density of 0.3 A/cm2, the specific capacitance of nitrogen-doped graphene nanoplatelets is 202.8 F/g. The good electrochemical performance of nitrogen-doped graphene nanolplatelet can be attributed to its high surface area and doping nitrogen at the edge. The simple and eco-friendly preparation procedure, low cost, and good electrochemical performance allow the as-prepared nitrogen-doped graphene nanoplatelets to be a promising candidate for the electrode materials in dye-sensitized solar cells and supercapacitors.
      通信作者: 王桂强, wgqiang@bhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21273137)资助的课题.
      Corresponding author: Wang Gui-Qiang, wgqiang@bhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21273137).
    [1]

    Wang H, Hu Y 2012 Energy Environ. Sci. 5 8182

    [2]

    Sun Y, Wu Q, Shi G 2011 Energy Environ. Sci. 4 1113

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A 2010 Nat. Photonics 4 611

    [4]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [粱振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [5]

    Park S, An J, Jung I, Piner R, An S, Li X, Ruoff R 2009 Nano Lett. 9 1593

    [6]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752

    [7]

    Li X, Wang H, Robinson J, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939

    [8]

    Long M, Liu E, Wang P, Gao A, Xiao H, Luo W, Wang B, Ni Z, You Y, Miao F 2016 Nano Lett. 16 2254

    [9]

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802 (in Chinese) [刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802]

    [10]

    Yu D, Nagelli E, Du F, Dai L 2010 J. Phys. Chem. Lett. 1 2165

    [11]

    Jung S, Choi I, Lim K, Ko J, Lee J, Kim H, Baek J 2014 Chem. Mater. 26 3586

    [12]

    Zhai P, Wei T, Chang Y, Huang Y, Su H, Feng S 2014 Small 10 3347

    [13]

    Zhang M, Dai L 2012 Nano Energy 1 514

    [14]

    Jeon I, Choi H, Ju M, Lim K, Kim J, Shi D, Kim H, Jung S, Seo J, Park N, Dai L, Beak J 2013 Sci. Rep. 3 2260

    [15]

    Han J, Xu G, Ding B, Pan J, Dou H, Macfarlane D 2014 J. Mater. Chem. A 2 5352

    [16]

    Luo Q, Hao F, Wang S, Shen H, Zhao L, Gratzel M, Lin H 2014 J. Phys. Chem. C 118 17010

    [17]

    Hao S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D 2013 Energy Environ. Sci. 6 3356

    [18]

    Jin Z, Yao J, Kittrell C, Tour J 2011 ACS Nano 5 4112

    [19]

    Qu L, Liu Y, Beak J, Dai L 2010 ACS Nano 4 1321

    [20]

    Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Dong S, Cui G 2011 J. Mater. Chem. 21 5430

    [21]

    Wang Y, Shao Y, Matson D, Li J, Lin Y 2010 ACS Nano 4 1790

    [22]

    Yang D, Kim C, Song M, Park H, Lee J, Ju M, Yu J 2014 J. Phys. Chem. C 118 16694

    [23]

    Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W, Fu Q, Xue Q, Bao X 2011 Chem. Mater. 23 1188

    [24]

    Kudin K, Ozbas B, Schniepp H, Aksay I, Car R 2008 Nano Lett. 8 36

    [25]

    Zhao L, Fan L, Zhou M, Guan H, Qiao S, Antonietti M, Titirici M 2010 Adv. Mater. 22 5202

  • [1]

    Wang H, Hu Y 2012 Energy Environ. Sci. 5 8182

    [2]

    Sun Y, Wu Q, Shi G 2011 Energy Environ. Sci. 4 1113

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A 2010 Nat. Photonics 4 611

    [4]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [粱振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [5]

    Park S, An J, Jung I, Piner R, An S, Li X, Ruoff R 2009 Nano Lett. 9 1593

    [6]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752

    [7]

    Li X, Wang H, Robinson J, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939

    [8]

    Long M, Liu E, Wang P, Gao A, Xiao H, Luo W, Wang B, Ni Z, You Y, Miao F 2016 Nano Lett. 16 2254

    [9]

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802 (in Chinese) [刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802]

    [10]

    Yu D, Nagelli E, Du F, Dai L 2010 J. Phys. Chem. Lett. 1 2165

    [11]

    Jung S, Choi I, Lim K, Ko J, Lee J, Kim H, Baek J 2014 Chem. Mater. 26 3586

    [12]

    Zhai P, Wei T, Chang Y, Huang Y, Su H, Feng S 2014 Small 10 3347

    [13]

    Zhang M, Dai L 2012 Nano Energy 1 514

    [14]

    Jeon I, Choi H, Ju M, Lim K, Kim J, Shi D, Kim H, Jung S, Seo J, Park N, Dai L, Beak J 2013 Sci. Rep. 3 2260

    [15]

    Han J, Xu G, Ding B, Pan J, Dou H, Macfarlane D 2014 J. Mater. Chem. A 2 5352

    [16]

    Luo Q, Hao F, Wang S, Shen H, Zhao L, Gratzel M, Lin H 2014 J. Phys. Chem. C 118 17010

    [17]

    Hao S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D 2013 Energy Environ. Sci. 6 3356

    [18]

    Jin Z, Yao J, Kittrell C, Tour J 2011 ACS Nano 5 4112

    [19]

    Qu L, Liu Y, Beak J, Dai L 2010 ACS Nano 4 1321

    [20]

    Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Dong S, Cui G 2011 J. Mater. Chem. 21 5430

    [21]

    Wang Y, Shao Y, Matson D, Li J, Lin Y 2010 ACS Nano 4 1790

    [22]

    Yang D, Kim C, Song M, Park H, Lee J, Ju M, Yu J 2014 J. Phys. Chem. C 118 16694

    [23]

    Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W, Fu Q, Xue Q, Bao X 2011 Chem. Mater. 23 1188

    [24]

    Kudin K, Ozbas B, Schniepp H, Aksay I, Car R 2008 Nano Lett. 8 36

    [25]

    Zhao L, Fan L, Zhou M, Guan H, Qiao S, Antonietti M, Titirici M 2010 Adv. Mater. 22 5202

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] 吕浩翔, 冯黛丽, 冯妍卉, 张欣欣. 掺杂石墨烯纳米片对硝酸钠相变特性的影响及机理. 物理学报, 2022, 71(15): 158801. doi: 10.7498/aps.71.20220354
    [3] 徐克欣, 夏田雨, 周亮, 李顺方, 蔡彬, 王荣明, 郭海中. 链状Pt-Ni纳米颗粒的制备、表征及高效电催化性能. 物理学报, 2020, 69(7): 076101. doi: 10.7498/aps.69.20200343
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [6] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极. 物理学报, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [7] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [8] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [9] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [10] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [11] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [12] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [13] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [14] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [15] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [16] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [18] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [19] 李玉琼, 陈建华, 郭进. 天然杂质对黄铁矿的电子结构及催化活性的影响. 物理学报, 2011, 60(9): 097801. doi: 10.7498/aps.60.097801
    [20] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
计量
  • 文章访问数:  6376
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 修回日期:  2016-06-16
  • 刊出日期:  2016-09-05

/

返回文章
返回