搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

链状Pt-Ni纳米颗粒的制备、表征及高效电催化性能

徐克欣 夏田雨 周亮 李顺方 蔡彬 王荣明 郭海中

引用本文:
Citation:

链状Pt-Ni纳米颗粒的制备、表征及高效电催化性能

徐克欣, 夏田雨, 周亮, 李顺方, 蔡彬, 王荣明, 郭海中

Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles

Xu Ke-Xin, Xia Tian-Yu, Zhou Liang, Li Shun-Fang, Cai Bin, Wang Rong-Ming, Guo Hai-Zhong
PDF
HTML
导出引用
  • 开发高效、稳定的电催化剂是燃料电池走向实用的关键. 为了解决催化剂因尺寸效应引起的催化活性和稳定性之间的矛盾, 采用简便的一步溶剂热法设计合成了具有一维链状结构的Pt-Ni合金纳米颗粒催化剂. 链状Pt-Ni纳米颗粒由平均尺寸约为10 nm的纳米颗粒和直径约为3 nm, 长度为几百纳米的纳米线组装而成, 该结构具有零维纳米颗粒高的比表面积和一维纳米线高的结构稳定性优势, 可显著提高甲醇氧化反应的催化活性和稳定性, 其质量活性和比活性分别是商业Pt/C纳米催化剂的5.7倍和7.6倍. 经1000圈循环伏安测试后, 该纳米材料仍保留91.2%的比活性, 远高于商业Pt/C的4.4%. 制备的一维链状结构很好地解决了纳米颗粒催化剂在反应中的团聚问题, 为获得同时具有较高催化活性和稳定性的Pt基纳米催化剂提供了新的途径, 有望实现大范围工业化应用.
    Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Despite tremendous research works in past decades, there remains a tough challenge in realizing the commercial applications of fuel cell technologies. Therefore, the development of highly efficient and stable fuel cell electrocatalyst is the top priority for practical fuel cells. As we all know, the small-size nanoparticles always have high specific surface area, which can provide more active sites to enhance the catalytic activity, while the one-dimensional nanowires usually own high structural stability. It may provide a possibility for the design of a novel bimetal Pt-based alloy nanostructure by combining the structural superiority of both, which can maintain the high stability and maximize the catalytic activity at the same time. Driven by these purposes, a novel nanostructure constructed by Pt-Ni alloy nanoparticles with a one-dimensional chain structure was designed to balance the contradiction between the activity and stability due to the size effects (the smaller the size, the higher the activity, and the worse the stability of the nanocatalyst; and vice versa). Here, a simple one-step solvothermal method has been adopted to produce the novel nanostructures constructed by the chain-like Pt-Ni nanoparticles (Pt-Ni CNPs) with Pt-rich crystal faces and alloy nature. The structure, component and catalysis were investigated by the combination of X-ray diffraction, transmission electron microscopy, X-ray photoemission spectra, and electrochemical measurements. The results show that the as-synthesized Pt-Ni CNP is constructed from a nanowire (with a diameter of about 3 nm and a length of several hundred nanometers) and the nanoparticles (with an average diameter of about 10 nm). This nanostructure is cleverly integrated the structural advantages of one-dimensional nanowires and zero-dimensional nanoparticles, which can significantly enhance the catalytic activity and stability for the methanol oxidation reaction (MOR) in acidic environment. Specially, the mass activity and specific activity of as-prepared Pt-Ni CNPs are 5.7 and 7.6 times higher than those of the commercial Pt/C, respectively. After 1000 cycles of cyclic voltammetry (CV) measurement, Pt-Ni CNPs still retain 91.2% of the specific activity, while the commercial Pt/C undergoes a drastic loss of MOR activities, retaining only 4.4% of the initial activity. It is particularly noteworthy that this nanostructure of Pt-Ni CNP solves the problem of agglomeration of nanoparticle catalysts in the reaction, and provides a new approach to obtain Pt-based nanocatalysts with high catalytic activity and stability at the same time. Our finding will provide insight into more rational designs of Pt-based bimetallic nanocatalysts with one-dimensional architectures, which is expected to promote the further development and large-scale industrial application of the direct methanol fuel.
      通信作者: 夏田雨, tyxia@zzu.edu.cn ; 郭海中, hguo@zzu.edu.cn
    • 基金项目: 国际级-国家自然科学基金(11574365)
      Corresponding author: Xia Tian-Yu, tyxia@zzu.edu.cn ; Guo Hai-Zhong, hguo@zzu.edu.cn
    [1]

    Guo S J, Zhang S, Sun S H 2013 Angew. Chem. Int. Ed. 52 8526Google Scholar

    [2]

    Yan Z X, Xie J M, Shen P K 2015 J. Power Sources 286 239Google Scholar

    [3]

    陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京 2012 物理学报 61 076801Google Scholar

    Chen X, Lin Z Z, Yin C, Tang H, Hu Y C, Ning X J 2012 Acta. Phys. Sin. 61 076801Google Scholar

    [4]

    Cui Z M, Chen H, Zhao M T, Marshall D, Yu Y C, Abruna H, DiSalvo F J 2014 J. Am. Chem. Soc. 136 10206Google Scholar

    [5]

    Vandichel M, Moscu A, Grönbeck H 2017 ACS Catal. 7 7431Google Scholar

    [6]

    Guo S J, Wen D, Zhai Y M, Dong S J, Wang E 2010 ACS Nano 4 3959Google Scholar

    [7]

    Yan Y C, Shan H, Li G, Xiao F, Jiang Y Y, Yan Y Y, Jin C H, Zhang H, Wu J B, Yang D R 2016 Nano Lett. 16 7999Google Scholar

    [8]

    田惠忱, 刘丽, 文玉华 2009 物理学报 58 4080Google Scholar

    Tian H C, Liu L, Wen Y H 2009 Acta. Phys. Sin. 58 4080Google Scholar

    [9]

    Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M 2014 Science 343 1339Google Scholar

    [10]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K 2009 Nat. Chem. 1 552Google Scholar

    [11]

    Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D 2016 Science 354 1410Google Scholar

    [12]

    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C F, Liu Z C, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A 2010 Nat. Chem. 2 454Google Scholar

    [13]

    汪志刚, 黄娆, 文玉华 2013 物理学报 62 126101Google Scholar

    Wang Z G, Huang R, Wen Y H 2013 Acta. Phys. Sin. 62 126101Google Scholar

    [14]

    Wang D S, Zhao P, Li Y D 2011 Sci. Rep.-UK 1 37Google Scholar

    [15]

    Gu J, Zhang Y W, Tao F F 2012 Chem. Soc. Rev. 41 8050Google Scholar

    [16]

    孙世刚, 文玉华, 张杨, 朱梓忠 2009 物理学报 58 2585Google Scholar

    Sun S G, Wen Y H, Zhang Y, Zhu Z Z 2009 Acta. Phys. Sin. 58 2585Google Scholar

    [17]

    Zhou X W, Zhang R H, Zhou Z Y, Sun S G 2011 J. Power Sources 196 5844Google Scholar

    [18]

    Shan A X, Chen Z C, Li B Q, Chen C P, Wang R M 2015 J. Mater. Chem. A 3 1031Google Scholar

    [19]

    Zhang L W, Gao A, Liu Y, Wang Y, Ma J T 2014 Electrochim. Acta 132 416Google Scholar

    [20]

    Chung D Y, Yoo J M, Sung Y E 2018 Adv. Mater. 30 1704123Google Scholar

    [21]

    Kong D S, Cha J J, Wang H T, Lee H R, Cui Y 2013 Energy Environ. Sci. 6 3553Google Scholar

    [22]

    Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X 2015 Angew. Chem. Int. Ed. 54 3797Google Scholar

    [23]

    Yoo S H, Park S 2007 Adv. Mater. 19 1612Google Scholar

    [24]

    Liu F, Lee J Y, Zhou W J 2006 Small 2 121Google Scholar

    [25]

    Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K 2010 Electrochim. Acta 55 4827Google Scholar

    [26]

    Liang H W, Cao X, Zhou F, Cui C H, Zhang W J, Yu S H 2011 Adv. Mater. 23 1467Google Scholar

    [27]

    Ding L X, Li G R, Wang Z L, Liu Z Q, Liu H, Tong Y X 2012 Chem. Eur. J. 18 8386Google Scholar

    [28]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354Google Scholar

    [29]

    Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J, Lou X W, Xia B Y 2019 Science 366 850Google Scholar

    [30]

    Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Li C J, Yang Y, Wang L, Gao P, Lu G, Guo S J 2018 Adv. Mater. 30 1705515Google Scholar

    [31]

    Gao F, Zhang Y P, Song P P, Wang J, Yan B, Sun Q W, Li L, Zhu X, Du Y K 2019 Nanoscale 11 4831Google Scholar

    [32]

    Bu L Z, Ding J B, Guo S J, Zhang X, Su D, Zhu X, Yao J L, Guo J, Lu G, Huang X Q 2015 Adv. Mater. 27 7204Google Scholar

    [33]

    Zhao Y P, Tao L, Dang W, Wang L L, Xia M R, Wang B, Liu M M, Gao F M, Zhang J J, Zhao Y F 2019 Small 15 1900288Google Scholar

    [34]

    Qiu X Y, Li T C, Deng S H, Cen K, Xu L D, Tang Y W 2018 Chem. Eur. J. 24 1246Google Scholar

    [35]

    Tseng Y C, Chen H S, Liu C W, Yeh T H, Wang K W 2014 J. Mater. Chem. A 2 4270Google Scholar

    [36]

    Wagner C D 1979 Perkin-Elmer Corporation 80

    [37]

    Wang J, Yang B B, Gao F, Song P P, Li L, Zhang Y P, Lu C, Goh M C, Du Y K 2019 Nanoscale Res. Lett. 14 11Google Scholar

    [38]

    Zhao X, Zhang J, Wang L J, Li H X, Liu Z L, Chen W 2015 ACS Appl. Mater. Interfaces 7 26333Google Scholar

    [39]

    Liu H M, Liu X Y, Li Y M, Jia Y J, Tang Y W, Chen Y 2016 Nano Res. 9 3494Google Scholar

    [40]

    Xie L S, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P 2018 Inorg. Chem. Front. 5 1365Google Scholar

    [41]

    Van der Vliet D F, Wang C, Li D G, Paulikas A P, Greeley J, Rankin R B, Strmcnik D, Tripkovic D, Markovic N M, Stamenkovic V R 2012 Angew. Chem. Int. Ed. 51 3139Google Scholar

    [42]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Gu L, Wang R M 2016 ACS Appl. Mater. Interfaces 8 10841Google Scholar

    [43]

    Li K, Li X X, Huang H W, Luo L H, Li X, Yan X P, Ma C, Si R, Yang J L, Zeng J 2018 J. Am. Chem. Soc. 140 16159Google Scholar

    [44]

    Debe M K 2012 Nature 486 43Google Scholar

    [45]

    Wang D Y, Chou H L, Lin Y C, Lai F J, Chen C H, Lee J F, Hwang B J, Chen C C 2012 J. Am. Chem. Soc. 134 10011Google Scholar

    [46]

    Liu H Q, Adzic R R, Wong S S 2015 ACS Appl. Mater. Interfaces 7 26145Google Scholar

    [47]

    Lai S Q, Fu C L, Chen Y X, Yu X, Lai X D, Ye C, Hu J Q 2015 J. Power Sources 274 604Google Scholar

    [48]

    Zhang X R, Fan H S, Zheng J L, Duan S B, Huang Y X, Cui Y M, Wang R M 2018 Catal. Sci. Technol. 8 4757Google Scholar

    [49]

    Du C Y, Chen M, Wang W G, Yin G P 2011 ACS Appl. Mater. Interfaces 3 105Google Scholar

    [50]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Wang R M 2016 Sci. China Mater. 60 57Google Scholar

    [51]

    Lim K H, Chen Z X, Neyman K M, Rösch N 2006 J. Phys. Chem. B 110 14890Google Scholar

    [52]

    Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y 2016 Science 354 1414Google Scholar

    [53]

    Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S Y, Su D, Lu G, Sun S H 2014 J. Am. Chem. Soc. 136 7734Google Scholar

    [54]

    Wang D L, Xin H L, Hovden R, Wang H, Yu Y C, Muller D A, DiSalvo F J, Abruña H D 2013 Nat. Mater. 12 81Google Scholar

  • 图 1  (a) Pt-Ni CNPs的TEM图像, 插图是纳米颗粒的直径分布统计图; (b) 高放大倍数下单根Pt-Ni CNPs的TEM图像; (c) Pt-Ni CNPs的HAADF-STEM图像; (d)和(e)分别为(c)中Pt和Ni的EDS元素分布

    Fig. 1.  (a) TEM image of Pt-Ni CNPs. Inset: graph of the diameter distribution of nanoparticles; (b) TEM image of a single Pt-Ni CNPs at a higher magnification; (c) HAADF-STEM images of Pt-Ni CNPs; (d) and (e) are EDS element distribution images of Pt and Ni in Pt-Ni CNPs corresponding to (c), respectively.

    图 2  (a) Pt-Ni CNPs的 XRD 谱图及Pt 和 Ni 的标准卡片峰(分别对应红色和蓝色); (b) Pt-Ni CNPs的 EDS能谱图; (c)和(d)为Pt-Ni CNPs的XPS谱图, 分别对应Pt的4f峰和Ni的2p峰

    Fig. 2.  (a) XRD patterns of Pt-Ni CNPs and standard card peaks of Pt and Ni (corresponding to red and blue respectively); (b) EDS spectrum of Pt-Ni CNPs; (c) and (d) are XPS spectra of Pt-Ni CNPs, corresponding to the 4f peak of Pt and the 2p peak of Ni, respectively.

    图 3  Pt-Ni CNPs (红色) 和商业Pt/C (黑色) 的MOR性能对比 (a), (b)两种催化剂的CV曲线, 分别是ECSA和MOR; (c) 两种样品相对应的质量活性和比活性; (d) 以5 mV/s的扫描速率测得的LSV曲线, 插图是固定电流密度所需提供的电位值

    Fig. 3.  MOR performance comparison for Pt-Ni CNPs (red) and commercial Pt/C (black): (a) CV of the above catalysts for ECSAs; (b) CV of the above catalysts for MOR; (c) corresponding mass and specific activities of different catalysts for MOR; (d) LSV curves of the above electrocatalysts with a low scan rate of 5 mV/s. Inset:the potential required for fixed current density.

    图 4  (a) CO溶解曲线; (b)和(c)分别为Pt-Ni CNPs (红色)和商业Pt/C (黑色)在0.5 M H2SO4和1 M CH3OH混合溶液中的稳定性测试: 实线为第一圈CV循环曲线, 虚线为第1000圈CV循环曲线; (d) 两种样品1000圈CV循环前后比活性对比

    Fig. 4.  (a) The electrode area-normalized CO stripping curves; Stability test in 0.5 M H2SO4 and 1 M CH3OH solutions: (b) Pt-Ni CNPs (red) and (c) commercial Pt/C (black) with solid line as the first cycle and dashed line as the 1000th cycle; (d) specific activities of two samples before and after 1000 cycles.

  • [1]

    Guo S J, Zhang S, Sun S H 2013 Angew. Chem. Int. Ed. 52 8526Google Scholar

    [2]

    Yan Z X, Xie J M, Shen P K 2015 J. Power Sources 286 239Google Scholar

    [3]

    陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京 2012 物理学报 61 076801Google Scholar

    Chen X, Lin Z Z, Yin C, Tang H, Hu Y C, Ning X J 2012 Acta. Phys. Sin. 61 076801Google Scholar

    [4]

    Cui Z M, Chen H, Zhao M T, Marshall D, Yu Y C, Abruna H, DiSalvo F J 2014 J. Am. Chem. Soc. 136 10206Google Scholar

    [5]

    Vandichel M, Moscu A, Grönbeck H 2017 ACS Catal. 7 7431Google Scholar

    [6]

    Guo S J, Wen D, Zhai Y M, Dong S J, Wang E 2010 ACS Nano 4 3959Google Scholar

    [7]

    Yan Y C, Shan H, Li G, Xiao F, Jiang Y Y, Yan Y Y, Jin C H, Zhang H, Wu J B, Yang D R 2016 Nano Lett. 16 7999Google Scholar

    [8]

    田惠忱, 刘丽, 文玉华 2009 物理学报 58 4080Google Scholar

    Tian H C, Liu L, Wen Y H 2009 Acta. Phys. Sin. 58 4080Google Scholar

    [9]

    Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M 2014 Science 343 1339Google Scholar

    [10]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K 2009 Nat. Chem. 1 552Google Scholar

    [11]

    Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D 2016 Science 354 1410Google Scholar

    [12]

    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C F, Liu Z C, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A 2010 Nat. Chem. 2 454Google Scholar

    [13]

    汪志刚, 黄娆, 文玉华 2013 物理学报 62 126101Google Scholar

    Wang Z G, Huang R, Wen Y H 2013 Acta. Phys. Sin. 62 126101Google Scholar

    [14]

    Wang D S, Zhao P, Li Y D 2011 Sci. Rep.-UK 1 37Google Scholar

    [15]

    Gu J, Zhang Y W, Tao F F 2012 Chem. Soc. Rev. 41 8050Google Scholar

    [16]

    孙世刚, 文玉华, 张杨, 朱梓忠 2009 物理学报 58 2585Google Scholar

    Sun S G, Wen Y H, Zhang Y, Zhu Z Z 2009 Acta. Phys. Sin. 58 2585Google Scholar

    [17]

    Zhou X W, Zhang R H, Zhou Z Y, Sun S G 2011 J. Power Sources 196 5844Google Scholar

    [18]

    Shan A X, Chen Z C, Li B Q, Chen C P, Wang R M 2015 J. Mater. Chem. A 3 1031Google Scholar

    [19]

    Zhang L W, Gao A, Liu Y, Wang Y, Ma J T 2014 Electrochim. Acta 132 416Google Scholar

    [20]

    Chung D Y, Yoo J M, Sung Y E 2018 Adv. Mater. 30 1704123Google Scholar

    [21]

    Kong D S, Cha J J, Wang H T, Lee H R, Cui Y 2013 Energy Environ. Sci. 6 3553Google Scholar

    [22]

    Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X 2015 Angew. Chem. Int. Ed. 54 3797Google Scholar

    [23]

    Yoo S H, Park S 2007 Adv. Mater. 19 1612Google Scholar

    [24]

    Liu F, Lee J Y, Zhou W J 2006 Small 2 121Google Scholar

    [25]

    Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K 2010 Electrochim. Acta 55 4827Google Scholar

    [26]

    Liang H W, Cao X, Zhou F, Cui C H, Zhang W J, Yu S H 2011 Adv. Mater. 23 1467Google Scholar

    [27]

    Ding L X, Li G R, Wang Z L, Liu Z Q, Liu H, Tong Y X 2012 Chem. Eur. J. 18 8386Google Scholar

    [28]

    Guo S J, Zhang S, Sun X L, Sun S H 2011 J. Am. Chem. Soc. 133 15354Google Scholar

    [29]

    Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J, Lou X W, Xia B Y 2019 Science 366 850Google Scholar

    [30]

    Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Li C J, Yang Y, Wang L, Gao P, Lu G, Guo S J 2018 Adv. Mater. 30 1705515Google Scholar

    [31]

    Gao F, Zhang Y P, Song P P, Wang J, Yan B, Sun Q W, Li L, Zhu X, Du Y K 2019 Nanoscale 11 4831Google Scholar

    [32]

    Bu L Z, Ding J B, Guo S J, Zhang X, Su D, Zhu X, Yao J L, Guo J, Lu G, Huang X Q 2015 Adv. Mater. 27 7204Google Scholar

    [33]

    Zhao Y P, Tao L, Dang W, Wang L L, Xia M R, Wang B, Liu M M, Gao F M, Zhang J J, Zhao Y F 2019 Small 15 1900288Google Scholar

    [34]

    Qiu X Y, Li T C, Deng S H, Cen K, Xu L D, Tang Y W 2018 Chem. Eur. J. 24 1246Google Scholar

    [35]

    Tseng Y C, Chen H S, Liu C W, Yeh T H, Wang K W 2014 J. Mater. Chem. A 2 4270Google Scholar

    [36]

    Wagner C D 1979 Perkin-Elmer Corporation 80

    [37]

    Wang J, Yang B B, Gao F, Song P P, Li L, Zhang Y P, Lu C, Goh M C, Du Y K 2019 Nanoscale Res. Lett. 14 11Google Scholar

    [38]

    Zhao X, Zhang J, Wang L J, Li H X, Liu Z L, Chen W 2015 ACS Appl. Mater. Interfaces 7 26333Google Scholar

    [39]

    Liu H M, Liu X Y, Li Y M, Jia Y J, Tang Y W, Chen Y 2016 Nano Res. 9 3494Google Scholar

    [40]

    Xie L S, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P 2018 Inorg. Chem. Front. 5 1365Google Scholar

    [41]

    Van der Vliet D F, Wang C, Li D G, Paulikas A P, Greeley J, Rankin R B, Strmcnik D, Tripkovic D, Markovic N M, Stamenkovic V R 2012 Angew. Chem. Int. Ed. 51 3139Google Scholar

    [42]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Gu L, Wang R M 2016 ACS Appl. Mater. Interfaces 8 10841Google Scholar

    [43]

    Li K, Li X X, Huang H W, Luo L H, Li X, Yan X P, Ma C, Si R, Yang J L, Zeng J 2018 J. Am. Chem. Soc. 140 16159Google Scholar

    [44]

    Debe M K 2012 Nature 486 43Google Scholar

    [45]

    Wang D Y, Chou H L, Lin Y C, Lai F J, Chen C H, Lee J F, Hwang B J, Chen C C 2012 J. Am. Chem. Soc. 134 10011Google Scholar

    [46]

    Liu H Q, Adzic R R, Wong S S 2015 ACS Appl. Mater. Interfaces 7 26145Google Scholar

    [47]

    Lai S Q, Fu C L, Chen Y X, Yu X, Lai X D, Ye C, Hu J Q 2015 J. Power Sources 274 604Google Scholar

    [48]

    Zhang X R, Fan H S, Zheng J L, Duan S B, Huang Y X, Cui Y M, Wang R M 2018 Catal. Sci. Technol. 8 4757Google Scholar

    [49]

    Du C Y, Chen M, Wang W G, Yin G P 2011 ACS Appl. Mater. Interfaces 3 105Google Scholar

    [50]

    Xia T Y, Liu J L, Wang S G, Wang C, Sun Y, Wang R M 2016 Sci. China Mater. 60 57Google Scholar

    [51]

    Lim K H, Chen Z X, Neyman K M, Rösch N 2006 J. Phys. Chem. B 110 14890Google Scholar

    [52]

    Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y 2016 Science 354 1414Google Scholar

    [53]

    Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S Y, Su D, Lu G, Sun S H 2014 J. Am. Chem. Soc. 136 7734Google Scholar

    [54]

    Wang D L, Xin H L, Hovden R, Wang H, Yu Y C, Muller D A, DiSalvo F J, Abruña H D 2013 Nat. Mater. 12 81Google Scholar

  • [1] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [2] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [3] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 质子交换膜燃料电池多时间尺度下的动态特性. 物理学报, 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [4] 常静, 陈基. 一维纳米限域物质的结构. 物理学报, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [5] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [6] 高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广. 纳米流体液膜蒸发自组装双尺度沉积结构三维模拟. 物理学报, 2019, 68(14): 140205. doi: 10.7498/aps.68.20190270
    [7] 张祎男, 王丽华, 柳华杰, 樊春海. 基于DNA自组装的金属纳米结构制备及相关纳米光子学研究. 物理学报, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [8] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [9] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响. 物理学报, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [10] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [11] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [12] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [13] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [14] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [15] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [16] 姚 尧, 方忠慧, 周 江, 李 伟, 马忠元, 徐 骏, 黄信凡, 陈坤基, 宫本恭幸, 小田俊理. 激光干涉结晶法制备一维周期结构的纳米硅阵列. 物理学报, 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
    [17] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [18] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [19] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [20] 徐慧, 文胜. 一维纳米固体的电子结构. 物理学报, 1992, 41(10): 1661-1665. doi: 10.7498/aps.41.1661
计量
  • 文章访问数:  15672
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-04-05

/

返回文章
返回