Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides

Qu Ke Piao Sheng-Chun Zhu Feng-Qin

Citation:

A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides

Qu Ke, Piao Sheng-Chun, Zhu Feng-Qin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to provide constraint to the number of inversion parameters, sound speed profile is often modeled by empirical orthogonal functions (EOFs). However, the EOF method, which is dependent on the sample data, is often difficult to apply due to insufficient real-time in-situ measurements. In this paper, we present a novel basis for reconstructing the sound speed profile, which can be obtained by using historical data without real-time sample. By deducing the dynamic equations and the state function of water particle, the hydrodynamic mode bases (HMBs) can be calculated from historical data without real-time in-situ measurement, and a method of constructing the sound speed profile is established by using the dynamic characteristics of seawater. The use of the World Ocean Atlas 2013 (WOA13) can obtain the seasonal profiles of temperature and salinity, and then the HMB which represents the dynamic characteristic of internal tides is obtained and analyzed. Unlike EOF, the HMB and its projection coefficients are directly related to the sea dynamic features and have a more explicit physical meaning. According to the orthogonality analysis of hydrodynamic mode, the first-order coefficient can be used to describe the depth change of sound speed iso-lines and the second-order coefficient can be used to describe the change of sound speed gradient. Based on the conductance-temperature-depth profiles and broadband data from underwater explosion collected in the East China Sea experiment of the Asian Seas International Acoustic Experiment, the HMB is tested and compared with the EOF in the sound speed profile reconstruction and matched field tomography. The results show that the sound speed profile in shallow water area can be expressed by the HMB with proper precision. By means of the conventional matched field tomography, the valid sound speed profile can also be obtained in the form of HMB coefficients. The result of transmission loss prediction and tomography from HMB are as good as those from EOF, while the HMB has less dependent on real-time in-situ measurement. The HMB is easy to obtain and closely related to the physical characteristics of seawater, it can be used as an efficient alternative to EOF for monitoring the marine dynamic phenomena in sea areas with insufficient real-time in-situ measurement.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41406041), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310256), and the Excellent Young Teachers Program of GDOU, China (Grant No. HDYQ2015010).
    [1]

    Yang T C, Huang C F, Huang S H, Liu J Y 2017 IEEE J. Ocean. Eng. 42 663Google Scholar

    [2]

    Turgut A, Mignerey P C, Goldstein D J, Schindall J A 2013 J. Acoust. Soc. Am. 133 1981Google Scholar

    [3]

    刘进忠, 高大治, 王宁 2009 中国科学 G辑 39 719

    Liu J Z, Gao D Z, Wang N 2009 Sci. China G 39 719

    [4]

    Bianco M, Gerstoft P 2017 J. Acoust. Soc. Am. 141 1749Google Scholar

    [5]

    Huang C F, Gerstoft P, Hodgkiss W S 2008 J. Acoust. Soc. Am. 123 162Google Scholar

    [6]

    Taroundakis M I, Papadakis J S 1993 J. Computat. Acoust. 1 395Google Scholar

    [7]

    Li Z L, He L, Zhang R H, Li F H, Yu Y X, Lin P 2015 Sci. China: Phys. Mech. Astron. 58 1

    [8]

    张维, 杨士莪, 黄益旺, 唐俊峰, 宋扬 2012 振动与冲击 31 6Google Scholar

    Zhang W, Yang S E, Huang Y W, Tang J F, Song Y 2012 J. Vib. Shock 31 6Google Scholar

    [9]

    Li F H, Zhang R H 2010 Chin. Phys. Lett. 27 084303

    [10]

    何利, 李整林, 彭朝晖, 吴立新, 刘建军 2011 中国科学: 物理学 力学 天文学 41 49

    He L, Li Z L, Peng Z H, Wu L X, Liu J J 2011 Sci. China: Phys. Mech. Astron. 41 49

    [11]

    李佳, 杨坤德, 雷波, 何正耀 2012 物理学报 61 084301Google Scholar

    Li J, Yang K D, Lei B, He Z Y 2012 Acta Phys. Sin. 61 084301Google Scholar

    [12]

    张旭, 张永刚, 张健雪, 聂邦胜, 姚忠山 2010 海洋科学进展 28 498Google Scholar

    Zhang X, Zhang Y G, Zhang J X, Nie B S, Yao Z S 2010 Adv. Marine Sci. 28 498Google Scholar

    [13]

    Jensen J K, Hjelmervik K T, Østenstad P 2012 IEEE J. Ocean. Eng. 37 103Google Scholar

    [14]

    Hjelmervik K, Hjelmervik K T 2014 Ocean Dyn. 64 655Google Scholar

    [15]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [16]

    苏林, 马力, 宋文华, 郭圣明, 鹿力成 2015 物理学报 64 024302Google Scholar

    Su L, Ma L, Song W H, Guo S M, Lu L C 2015 Acta Phys. Sin. 64 024302Google Scholar

    [17]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410Google Scholar

    [18]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [19]

    Teague W J, Carron M J, Hogan P J 1990 J. Geophys. Res. Oceans 95 7167Google Scholar

    [20]

    张旭, 张永刚, 张健雪, 董楠 2011 海洋学报 33 54

    Zhang X, Zhang Y G, Zhang J X, Dong N 2011 Acta Oceanol. Sin. 33 54

    [21]

    oyer T P, Antonov J I, Baranova O K, Coleman C, Garcia H E, Grodsky A, Johnson D R, Locarnini R A, Mishonov A V, O'Brien T D, Paver C R, Reagan J R, Seidov D, Smolyar I V, Zweng M M https://repository.library.noaa.gov/view/noaa/ 1291 [2018-4-19]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p64

    [23]

    蔡树群 2015 内孤立波数值模式及其在南海区域的应用 (北京: 海洋出版社) 第10页

    Cai S Q 2015 Internal Solitons Numerical Model and Its Application in the South China Sea (Beijing: Ocean Press) p10 (in Chinese)

    [24]

    郭圣明, 胡涛 2010 哈尔滨工程大学学报 31 967Google Scholar

    Guo S M, Hu T 2010 J. Harbin Engin. Univ. 31 967Google Scholar

    [25]

    崔茂常, 乔方利, 莫军, 郭炳火 2002 海洋学报 24 127Google Scholar

    Cui M C, Qiao F L, Mo J, Guo B H 2002 Acta Oceanol. Sin. 24 127Google Scholar

    [26]

    宋文华, 胡涛, 郭圣明, 马力, 鹿力成 2014 声学学报 39 11Google Scholar

    Song W H, Hu T, Guo S M, Ma L, Lu L C 2014 Acta Acust. 39 11Google Scholar

    [27]

    Dahl P H, Zhang R, Miller J H, Bartek L R, Peng Z, Ramp S R, Zhou J X, Chiu C S, Lynch J F, Simmen J A 2004 IEEE J. Ocean. Eng. 29 920Google Scholar

    [28]

    何利, 李整林, 张仁和, 李风华 2006 自然科学进展 16 351Google Scholar

    He L, Li Z L, Zhang R H, Li F H 2006 Prog. Natural Sci. 16 351Google Scholar

    [29]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

  • 图 1  CTD测得的声速剖面(细线)和平均声速(粗线)

    Figure 1.  Sound speed profiles (thin line) and average sound speed profile (rough line) measured by CTD.

    图 2  温度、盐度以及浮力频率剖面

    Figure 2.  Temperature, salinity and buoyancy frequency profile.

    图 3  不同方法获得的声速剖面展开基比较(黑线, HMB方法; 红线, EOF方法)

    Figure 3.  Comparison of the sound speed profile bases obtained by different methods (black line, HMB; red line, EOF).

    图 4  不同样本重构效果的误差分析

    Figure 4.  Error analysis of different samples.

    图 5  第8号声速剖面重构

    Figure 5.  The 8th sound speed profile reconstruction.

    图 6  声速剖面计算传播分析(单位: dB) (a) CTD测量; (b) HMB重构; (c) EOF重构

    Figure 6.  Analysis of transmission loss calculated by sound speed profiles (dB): (a) CTD measurement; (b) HMB reconstruction; (c) EOF reconstruction.

    图 7  前两阶模态振幅

    Figure 7.  Amplitude of the first two modes.

    图 8  1525 m/s等声速线深度和第一阶投影系数随样本的变化

    Figure 8.  Variations of the depth at a sound speed of 1525 m/s and the first-order projection coefficient with samples.

    图 9  声速梯度和第二阶投影系数随样本的变化

    Figure 9.  Variations of the sound speed gradient and the second-order projection coefficient with samples.

    图 10  反演流程

    Figure 10.  Inversion process.

    图 11  不同距离的反演结果 (a) 10.2 km; (b) 10.2 km; (c) 12 km

    Figure 11.  Inversion results at different ranges: (a) 10.2 km; (b) 10.2 km; (c)12 km.

    图 12  3个反演参数的边缘概率密度分布 (红线为代价函数最优值对应参数)

    Figure 12.  Probability distribution for the three inversion parameters (the red line is the optimum value for the objective function).

    图 13  传播损失预报与观测值

    Figure 13.  Transmission loss predicted and measured.

    表 1  不同方法重构效果的误差分析(单位: m/s)

    Table 1.  Error analysis of different reconstruction methods (m/s).

    阶数
    12345678
    HMB方法
    均方根误差
    1.00.690.600.540.490.420.370.34
    EOF方法
    均方根误差
    0.760.590.470.420.340.290.250.22
    DownLoad: CSV

    表 2  不同方法各阶所占声速剖面变化比重

    Table 2.  Proportion of sound speed variety for each order in different methods.

    阶数
    12345678
    HMB方法
    所占变化比
    55.618.19.34.73.73.12.11.8
    EOF方法
    所占变化比
    71.415.15.74.21.50.90.50.2
    DownLoad: CSV
  • [1]

    Yang T C, Huang C F, Huang S H, Liu J Y 2017 IEEE J. Ocean. Eng. 42 663Google Scholar

    [2]

    Turgut A, Mignerey P C, Goldstein D J, Schindall J A 2013 J. Acoust. Soc. Am. 133 1981Google Scholar

    [3]

    刘进忠, 高大治, 王宁 2009 中国科学 G辑 39 719

    Liu J Z, Gao D Z, Wang N 2009 Sci. China G 39 719

    [4]

    Bianco M, Gerstoft P 2017 J. Acoust. Soc. Am. 141 1749Google Scholar

    [5]

    Huang C F, Gerstoft P, Hodgkiss W S 2008 J. Acoust. Soc. Am. 123 162Google Scholar

    [6]

    Taroundakis M I, Papadakis J S 1993 J. Computat. Acoust. 1 395Google Scholar

    [7]

    Li Z L, He L, Zhang R H, Li F H, Yu Y X, Lin P 2015 Sci. China: Phys. Mech. Astron. 58 1

    [8]

    张维, 杨士莪, 黄益旺, 唐俊峰, 宋扬 2012 振动与冲击 31 6Google Scholar

    Zhang W, Yang S E, Huang Y W, Tang J F, Song Y 2012 J. Vib. Shock 31 6Google Scholar

    [9]

    Li F H, Zhang R H 2010 Chin. Phys. Lett. 27 084303

    [10]

    何利, 李整林, 彭朝晖, 吴立新, 刘建军 2011 中国科学: 物理学 力学 天文学 41 49

    He L, Li Z L, Peng Z H, Wu L X, Liu J J 2011 Sci. China: Phys. Mech. Astron. 41 49

    [11]

    李佳, 杨坤德, 雷波, 何正耀 2012 物理学报 61 084301Google Scholar

    Li J, Yang K D, Lei B, He Z Y 2012 Acta Phys. Sin. 61 084301Google Scholar

    [12]

    张旭, 张永刚, 张健雪, 聂邦胜, 姚忠山 2010 海洋科学进展 28 498Google Scholar

    Zhang X, Zhang Y G, Zhang J X, Nie B S, Yao Z S 2010 Adv. Marine Sci. 28 498Google Scholar

    [13]

    Jensen J K, Hjelmervik K T, Østenstad P 2012 IEEE J. Ocean. Eng. 37 103Google Scholar

    [14]

    Hjelmervik K, Hjelmervik K T 2014 Ocean Dyn. 64 655Google Scholar

    [15]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [16]

    苏林, 马力, 宋文华, 郭圣明, 鹿力成 2015 物理学报 64 024302Google Scholar

    Su L, Ma L, Song W H, Guo S M, Lu L C 2015 Acta Phys. Sin. 64 024302Google Scholar

    [17]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410Google Scholar

    [18]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [19]

    Teague W J, Carron M J, Hogan P J 1990 J. Geophys. Res. Oceans 95 7167Google Scholar

    [20]

    张旭, 张永刚, 张健雪, 董楠 2011 海洋学报 33 54

    Zhang X, Zhang Y G, Zhang J X, Dong N 2011 Acta Oceanol. Sin. 33 54

    [21]

    oyer T P, Antonov J I, Baranova O K, Coleman C, Garcia H E, Grodsky A, Johnson D R, Locarnini R A, Mishonov A V, O'Brien T D, Paver C R, Reagan J R, Seidov D, Smolyar I V, Zweng M M https://repository.library.noaa.gov/view/noaa/ 1291 [2018-4-19]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p64

    [23]

    蔡树群 2015 内孤立波数值模式及其在南海区域的应用 (北京: 海洋出版社) 第10页

    Cai S Q 2015 Internal Solitons Numerical Model and Its Application in the South China Sea (Beijing: Ocean Press) p10 (in Chinese)

    [24]

    郭圣明, 胡涛 2010 哈尔滨工程大学学报 31 967Google Scholar

    Guo S M, Hu T 2010 J. Harbin Engin. Univ. 31 967Google Scholar

    [25]

    崔茂常, 乔方利, 莫军, 郭炳火 2002 海洋学报 24 127Google Scholar

    Cui M C, Qiao F L, Mo J, Guo B H 2002 Acta Oceanol. Sin. 24 127Google Scholar

    [26]

    宋文华, 胡涛, 郭圣明, 马力, 鹿力成 2014 声学学报 39 11Google Scholar

    Song W H, Hu T, Guo S M, Ma L, Lu L C 2014 Acta Acust. 39 11Google Scholar

    [27]

    Dahl P H, Zhang R, Miller J H, Bartek L R, Peng Z, Ramp S R, Zhou J X, Chiu C S, Lynch J F, Simmen J A 2004 IEEE J. Ocean. Eng. 29 920Google Scholar

    [28]

    何利, 李整林, 张仁和, 李风华 2006 自然科学进展 16 351Google Scholar

    He L, Li Z L, Zhang R H, Li F H 2006 Prog. Natural Sci. 16 351Google Scholar

    [29]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

  • [1] Sun Yan-Xu, Huang Juan, Gao Wei, Chang Jia-Feng, Zhang Wei, Shi Chang, Li Yun-He. Tomography of fast ion distribution function under neutral beam injection and ion cyclotron resonance heating on EAST. Acta Physica Sinica, 2023, 72(21): 215203. doi: 10.7498/aps.72.20230846
    [2] Sun Guan-Wen, Cui Han-Yin, Li Chao, Lin Wei-Jun. Methods of modelling dispersive sound speed profiles of Martian atmosphere and their effects on sound propagation paths. Acta Physica Sinica, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [3] Deng Luan, Du Bao, Cai Hong-Bo, Kang Dong-Guo, Zhu Shao-Ping. Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography. Acta Physica Sinica, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [4] Zhou Yan-Ling, Fan Jun, Wang Bin. Inversion for acoustic parameters of plastic polymer target in water. Acta Physica Sinica, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [5] Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang. Weighting inversion of dynamic light scattering based on particle-size information distribution character. Acta Physica Sinica, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [6] Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao. Effects of the surface albedo on short-wave infrared detection of atmospheric CO2. Acta Physica Sinica, 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [7] Duan Xiao-Liang, Wang Yi-Bo, Yang Hui-Zhu. Regularized seismic velocity inversion based on inverse scattering theory. Acta Physica Sinica, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [8] Qing Hai-Yin, Zhang Yuan-Nong, Zhou Chen, Zhao Zheng-Yu, Chen Gang. Atmospheric temperature profiles estimated by the vertical wind speed observed by MST radar. Acta Physica Sinica, 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [9] Li Lun, Wu Xiong-Bin. Multiple sites HFSWR ocean shallow water depth and current inversion. Acta Physica Sinica, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [10] Li Lun, Wu Xiong-Bin, Xu Xing-An. Optimization method for extracting ocean wave parameters from HFSWR. Acta Physica Sinica, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [11] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong. Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [12] Li Hai-Yan, Hu Yun-An, Ren Jian-Cun, Zhu Min, Liu Liang. Neural network-based backstepping design for the synchronization of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Acta Physica Sinica, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [13] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [14] Li Jia, Yang Kun-De, Lei Bo, He Zheng-Yao. Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean. Acta Physica Sinica, 2012, 61(8): 084301. doi: 10.7498/aps.61.084301
    [15] Ding Shi-Jing, Ge De-Biao, Shen Ning. Numerical simulation of equivalent electromagnetic parameters of composite material. Acta Physica Sinica, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [16] Yang Kun-De, Ma Yuan-Liang. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [17] Sun Xian-Ming, Ha Heng-Xu. Retrieval of the optical thickness and effective radius of aerosols from reflected solar radiation measurements. Acta Physica Sinica, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [18] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [20] Liang Zi-Zhang, Jin Ya-Qiu. . Acta Physica Sinica, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
Metrics
  • Abstract views:  9948
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2018
  • Accepted Date:  28 February 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回