Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of research on active noise control near human ear in complex sound field

Zou Hai-Shan Qiu Xiao-Jun

Citation:

A review of research on active noise control near human ear in complex sound field

Zou Hai-Shan, Qiu Xiao-Jun
PDF
HTML
Get Citation
  • Local control of sound around human ears in complex acoustic environments is important for both active noise control and sound reproduction. Two typical active noise control approaches for this objective are active headrest systems and virtual sound barrier systems. In this paper, the history and the present status for the active headrest systems and virtual sound barrier systems are briefed first, then the theoretical principles, the design methods and the applications of these approaches are reviewed. Their advantages and limitations are discussed, and finally, the currently existing problems and future research directions are presented. The feasibility of these approaches to generating a quiet zone near a human ear has been verified by the theoretical research, numerical simulations and experiments. The active headrest systems require less control sources and are simpler for implementation; however, they suffer the problem of small-sized quiet zones. This results in the restrictions on the head movement since the error sensor needs to be close to the human ear to obtain better noise reduction performance. Based on the virtual sensor technology, a physical error sensor can be placed farther away from the human head, and create the quiet zone at the virtual sensor position near the human ear. Moreover, combined with the virtual sensor technology and the head-tracking technology, an active headrest system can generate a moving zone of quiet following the head movement, and the noise reduction can be achieved in a middle-to-high frequency range. A virtual sound barrier system reduces the sound pressure inside a volume, through controlling the sound pressure and normal gradient on the boundary of the volume. Two main design methods are the expansion method of the primary sound field which is suitable for steady primary sound fields, and the least mean square method which is applicable to time-varying primary sound fields. It can generate larger quiet zone at the cost of more control sources, more complexity and high cost. Optimizing cost functions and control sources and using hybrid active and passive control techniques can increase the effective frequency range and reduce the number of control sources. Although the feasibility of these two systems has been verified, more research work is needed to develop practical systems. An active-passive hybrid structure for specific application scenarios, which combines these two approaches together as well as the virtual sensor technology and sound field estimation technology, may most likely be practical methods to achieve effective noise reduction near the human ear in a complex sound field in the near future.
      Corresponding author: Zou Hai-Shan, hszou@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874218, 11874219).
    [1]

    Bies D A, Hansen C H 2009 Engineering Noise Control: Theory and Practice (London and New York: Spon Press) pp3−12

    [2]

    Fuller C R, von Flotow A H 1995 IEEE Contr. Syst. Mag. 15 9Google Scholar

    [3]

    Nelson P A, Elliott S J 1986 J. Sound Vib. 105 173Google Scholar

    [4]

    Nelson P A, Curtis A R D, Elliott S J, Bullmore A J 1987 J. Sound Vib. 116 397Google Scholar

    [5]

    Omoto A, Fujiwara K 1993 J. Acoust. Soc. Am. 94 2173

    [6]

    Omoto A, Takashima K, Fujiwara K 1997 J. Acoust. Soc. Am. 102 1671Google Scholar

    [7]

    Guo J, Pan J 1998 J. Acoust. Soc. Am. 104 3408Google Scholar

    [8]

    Niu F, Zou H, Qiu X, Wu M 2007 J. Sound Vib. 299 409Google Scholar

    [9]

    Ang L Y L, Yong K K, Lee H P 2017 Appl. Acoust. 122 16Google Scholar

    [10]

    Bai M R, Pan W, Chen H 2018 J. Acoust. Soc. Am. 143 1613Google Scholar

    [11]

    Elliott S J, Joseph P, Bullmore A J, Nelson P A 1988 J. Sound Vib. 120 183Google Scholar

    [12]

    Garcia-Bonito J, Elliott S J 1995 J. Acoust. Soc. Am. 98 1017Google Scholar

    [13]

    Rafaely B, Elliott S J, Garciabonito J 1999 J. Acoust. Soc. Am. 106 787Google Scholar

    [14]

    Garcia-Bonito J, Elliott S J, Boucher C C 1997 J. Acoust. Soc. Am. 101 3498Google Scholar

    [15]

    Elliott S J, Jones M 2006 J. Acoust. Soc. Am. 119 2702Google Scholar

    [16]

    Jung W, Elliott S J, Cheer J 2017 J. Acoust. Soc. Am. 142 298Google Scholar

    [17]

    Elliott S J, Jung W, Cheer J 2018 Sci. Rep. 8 5403Google Scholar

    [18]

    Moreau D J, Ghan J, Cazzolato B S, Zander A C 2009 J. Acoust. Soc. Am. 125 3742Google Scholar

    [19]

    Ise S 1999 Acta Acust. United Ac. 85 78

    [20]

    Qiu X, Li N, Chen G 2005 Proceedings of the 12th International Congress on Sound and Vibration, Lisbon, Portugal, July 11−14, 2005

    [21]

    Zou H, Qiu X, Lu J, Niu F 2007 J. Sound Vib. 307 379Google Scholar

    [22]

    Zou H, Qiu X 2008 Appl. Acoust. 69 875Google Scholar

    [23]

    Epain N, Friot E 2007 J. Sound Vib. 299 587Google Scholar

    [24]

    Zhang X, Qiu X 2017 Appl. Acoust. 116 283Google Scholar

    [25]

    Olson H F, May E G 1953 J. Acoust. Soc. Am. 25 1130Google Scholar

    [26]

    David A, Elliott S J 1994 Appl. Acoust. 41 63Google Scholar

    [27]

    Joseph P, Elliott S J, Nelson P A 1994 J. Sound Vib. 172 605Google Scholar

    [28]

    Elliott S J, Garcia-Bonito J 1995 J. Sound Vib. 186 696Google Scholar

    [29]

    Garcia-Bonito J, Elliott S J 1999 J. Sound Vib. 221 85Google Scholar

    [30]

    Garcia-Bonito J, Elliot S J, Bonilha M 1997 J. Sound Vib. 201 43Google Scholar

    [31]

    Rafaely B 2000 J. Acoust. Soc. Am. 107 3254Google Scholar

    [32]

    Rafaely B 2001 J. Acoust. Soc. Am. 110 296Google Scholar

    [33]

    Elliott S J, David A 1992 Proceedings of 1st International Conference on Motion and Vibration Control Yokohama, Japan, September 7−11, 1992 p1027

    [34]

    Roure A, Albarrazin A 1999 Active 99: the International Symposium on Active Control of Sound and Vibration Florida, USA, December 2−4, 1999 p1233

    [35]

    Jung W, Elliott S J, Cheer J 2018 J. Acoust. Soc. Am. 143 2858Google Scholar

    [36]

    Kestell C D, Hansen C H, Cazzolato B S 2000 Int. J. Acoust. Vib. 5 63

    [37]

    Kestell C D, Cazzolato B S, Hansen C H 2001 J. Acoust. Soc. Am. 109 232Google Scholar

    [38]

    Petersen C D, Fraanje R, Cazzolato B S, Zander A C, Hansen C H 2008 Mech. Syst. Signal Pr. 22 490Google Scholar

    [39]

    Petersen C D, Zander A C, Cazzolato B S, Hansen C H 2007 J. Acoust. Soc. Am. 121 1459Google Scholar

    [40]

    Moreau D J, Cazzolato B S, Zander A C 2008 J. Acoust. Soc. Am. 123 3063

    [41]

    Elliott S, Simon M, Cheer J, Jung W 2015 12th Western Pacific Acoustics Conference Singapore, December 6−10, 2015 p385

    [42]

    Lei C, Xu J, Wang J, Zheng C, Li X 2015 J. Low Freq. Noise V. A. 34 233Google Scholar

    [43]

    Cook R K, Waterhouse R V, Berendt R D, Edelman S, Thompson M C 1955 J. Acoust. Soc. Am. 27 1072Google Scholar

    [44]

    Joseph P 1990 Ph.D. Dissertation (England: University of Southampton)

    [45]

    Elliott S J, Cheer J 2015 J. Acoust. Soc. Am. 137 1936Google Scholar

    [46]

    Sano H 2011 The 40th Inter-noise & Noise-con Congress & Conference Osaka, Japan, September 4−7, 2011 p2491

    [47]

    Duan J 2011 Ph.D. Dissertation (USA: University of Cincinnati)

    [48]

    Nelson P A, Elliott S J 1992 Active control of sound (London: Academic Press) pp282−287

    [49]

    Jessel M J M 1968 Proceedings 6th International Congress on Acoustics Tokyo, Japan, Auguster 21−28, 1968 paper F-5−6 p82

    [50]

    Malyuzhinets G D 1969 Sov. Phys. Dokl. 14 118

    [51]

    Canevet G 1978 J. Sound Vib. 58 333Google Scholar

    [52]

    Jessel M J M, Mangiante G A 1972 J. Sound Vib. 23 383Google Scholar

    [53]

    Mangiante G A 1977 J. Acoust. Soc. Am. 61 1516Google Scholar

    [54]

    邹海山, 邱小军, 卢晶 2008 声学技术 27 621

    Zou H S, Qiu X J, Lu J 2008 Tech. Acoust. 27 621

    [55]

    邹海山, 邱小军 2009 南京大学学报(自然科学版) 45 57Google Scholar

    Zou H S, Qiu X J 2009 J. Nanjing Univ. (Nat. Sci. Ed.) 45 57Google Scholar

    [56]

    饶维 2011 硕士学位论文 (南京: 南京大学)

    Rao W 2011 M.S Thesis (Nanjing: Nanjing University) (in Chinese)

    [57]

    Qiu X, Zou H, Rao W 2009 Proceedings of the 2009 International Symposium on Active Control of Sound and Vibration Ottawa Canada, August 20−22, 2009 p239

    [58]

    邹海山 2007 博士学位论文 (南京: 南京大学)

    Zou H S 2007 Ph.D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [59]

    Williams E 1999 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (London: Academic Press) pp186−211

    [60]

    Xue J, Huang X, Lu J, Wang S, Tao J, Chen K 2015 The 44th Inter-noise & Noise-con Congress & Conference San Francisco USA, August 9−12, 2015 p2377

    [61]

    Pawelczyk M 2003 Int. J. Adapt. Control 17 785

    [62]

    Poletti M A, Abhayapala T D, Samarasinghe P 2012 J. Acoust. Soc. Am. 131 3814Google Scholar

    [63]

    Chang J H, Jacobsen F 2013 J. Acoust. Soc. Am. 133 2046Google Scholar

    [64]

    Tao J, Wang S, Qiu X, Pan J 2017 Appl. Acoust. 123 1Google Scholar

    [65]

    Huang X, Zou H, Qiu X 2015 Build. Environ. 94 891Google Scholar

    [66]

    Wang X, Koba Y, Ishikawa S, Kijmoto S 2014 The 43rd Inter-noise & Noise-con Congress & Conference Melbourne, Australia, November 16−19, 2014 p378

    [67]

    韩荣, 吴鸣, 王晓琳, 孙红灵, 杨军 2018 应用声学 37 664Google Scholar

    Han R, Wu M, Wang X, Sun H, Yang J 2018 Appl. Acoust. 37 664Google Scholar

  • 图 1  AHR示意图

    Figure 1.  Schematic drawing of AHR.

    图 2  单通道虚拟传声器示意图[14]

    Figure 2.  Schematic drawing of single-channel virtual microphone arrangement[14].

    图 3  使用远程传声器技术和人头跟踪系统的AHR系统[16]

    Figure 3.  AHR system integrated with remote microphone technique and head tracker system[16].

    图 4  VSB系统示意图

    Figure 4.  Schematic drawing of a VSB system.

    图 5  圆柱状分布内含人头的16通道VSB系统[58]

    Figure 5.  Setup of the 16-channel cylindrical VSB system with a rigid sphere[58].

    图 6  实验环境照片[58]

    Figure 6.  Photo of experimental setup[58].

    图 7  实测VSB系统平均降噪量NR随频率变化的曲线[58]

    Figure 7.  Experimental results of control performance with respect to the frequency of noise signal[58].

    图 8  实测人头移动对降噪效果的影响[58]

    Figure 8.  Experimental results of control performance with respect to the movements of rigid sphere[58].

  • [1]

    Bies D A, Hansen C H 2009 Engineering Noise Control: Theory and Practice (London and New York: Spon Press) pp3−12

    [2]

    Fuller C R, von Flotow A H 1995 IEEE Contr. Syst. Mag. 15 9Google Scholar

    [3]

    Nelson P A, Elliott S J 1986 J. Sound Vib. 105 173Google Scholar

    [4]

    Nelson P A, Curtis A R D, Elliott S J, Bullmore A J 1987 J. Sound Vib. 116 397Google Scholar

    [5]

    Omoto A, Fujiwara K 1993 J. Acoust. Soc. Am. 94 2173

    [6]

    Omoto A, Takashima K, Fujiwara K 1997 J. Acoust. Soc. Am. 102 1671Google Scholar

    [7]

    Guo J, Pan J 1998 J. Acoust. Soc. Am. 104 3408Google Scholar

    [8]

    Niu F, Zou H, Qiu X, Wu M 2007 J. Sound Vib. 299 409Google Scholar

    [9]

    Ang L Y L, Yong K K, Lee H P 2017 Appl. Acoust. 122 16Google Scholar

    [10]

    Bai M R, Pan W, Chen H 2018 J. Acoust. Soc. Am. 143 1613Google Scholar

    [11]

    Elliott S J, Joseph P, Bullmore A J, Nelson P A 1988 J. Sound Vib. 120 183Google Scholar

    [12]

    Garcia-Bonito J, Elliott S J 1995 J. Acoust. Soc. Am. 98 1017Google Scholar

    [13]

    Rafaely B, Elliott S J, Garciabonito J 1999 J. Acoust. Soc. Am. 106 787Google Scholar

    [14]

    Garcia-Bonito J, Elliott S J, Boucher C C 1997 J. Acoust. Soc. Am. 101 3498Google Scholar

    [15]

    Elliott S J, Jones M 2006 J. Acoust. Soc. Am. 119 2702Google Scholar

    [16]

    Jung W, Elliott S J, Cheer J 2017 J. Acoust. Soc. Am. 142 298Google Scholar

    [17]

    Elliott S J, Jung W, Cheer J 2018 Sci. Rep. 8 5403Google Scholar

    [18]

    Moreau D J, Ghan J, Cazzolato B S, Zander A C 2009 J. Acoust. Soc. Am. 125 3742Google Scholar

    [19]

    Ise S 1999 Acta Acust. United Ac. 85 78

    [20]

    Qiu X, Li N, Chen G 2005 Proceedings of the 12th International Congress on Sound and Vibration, Lisbon, Portugal, July 11−14, 2005

    [21]

    Zou H, Qiu X, Lu J, Niu F 2007 J. Sound Vib. 307 379Google Scholar

    [22]

    Zou H, Qiu X 2008 Appl. Acoust. 69 875Google Scholar

    [23]

    Epain N, Friot E 2007 J. Sound Vib. 299 587Google Scholar

    [24]

    Zhang X, Qiu X 2017 Appl. Acoust. 116 283Google Scholar

    [25]

    Olson H F, May E G 1953 J. Acoust. Soc. Am. 25 1130Google Scholar

    [26]

    David A, Elliott S J 1994 Appl. Acoust. 41 63Google Scholar

    [27]

    Joseph P, Elliott S J, Nelson P A 1994 J. Sound Vib. 172 605Google Scholar

    [28]

    Elliott S J, Garcia-Bonito J 1995 J. Sound Vib. 186 696Google Scholar

    [29]

    Garcia-Bonito J, Elliott S J 1999 J. Sound Vib. 221 85Google Scholar

    [30]

    Garcia-Bonito J, Elliot S J, Bonilha M 1997 J. Sound Vib. 201 43Google Scholar

    [31]

    Rafaely B 2000 J. Acoust. Soc. Am. 107 3254Google Scholar

    [32]

    Rafaely B 2001 J. Acoust. Soc. Am. 110 296Google Scholar

    [33]

    Elliott S J, David A 1992 Proceedings of 1st International Conference on Motion and Vibration Control Yokohama, Japan, September 7−11, 1992 p1027

    [34]

    Roure A, Albarrazin A 1999 Active 99: the International Symposium on Active Control of Sound and Vibration Florida, USA, December 2−4, 1999 p1233

    [35]

    Jung W, Elliott S J, Cheer J 2018 J. Acoust. Soc. Am. 143 2858Google Scholar

    [36]

    Kestell C D, Hansen C H, Cazzolato B S 2000 Int. J. Acoust. Vib. 5 63

    [37]

    Kestell C D, Cazzolato B S, Hansen C H 2001 J. Acoust. Soc. Am. 109 232Google Scholar

    [38]

    Petersen C D, Fraanje R, Cazzolato B S, Zander A C, Hansen C H 2008 Mech. Syst. Signal Pr. 22 490Google Scholar

    [39]

    Petersen C D, Zander A C, Cazzolato B S, Hansen C H 2007 J. Acoust. Soc. Am. 121 1459Google Scholar

    [40]

    Moreau D J, Cazzolato B S, Zander A C 2008 J. Acoust. Soc. Am. 123 3063

    [41]

    Elliott S, Simon M, Cheer J, Jung W 2015 12th Western Pacific Acoustics Conference Singapore, December 6−10, 2015 p385

    [42]

    Lei C, Xu J, Wang J, Zheng C, Li X 2015 J. Low Freq. Noise V. A. 34 233Google Scholar

    [43]

    Cook R K, Waterhouse R V, Berendt R D, Edelman S, Thompson M C 1955 J. Acoust. Soc. Am. 27 1072Google Scholar

    [44]

    Joseph P 1990 Ph.D. Dissertation (England: University of Southampton)

    [45]

    Elliott S J, Cheer J 2015 J. Acoust. Soc. Am. 137 1936Google Scholar

    [46]

    Sano H 2011 The 40th Inter-noise & Noise-con Congress & Conference Osaka, Japan, September 4−7, 2011 p2491

    [47]

    Duan J 2011 Ph.D. Dissertation (USA: University of Cincinnati)

    [48]

    Nelson P A, Elliott S J 1992 Active control of sound (London: Academic Press) pp282−287

    [49]

    Jessel M J M 1968 Proceedings 6th International Congress on Acoustics Tokyo, Japan, Auguster 21−28, 1968 paper F-5−6 p82

    [50]

    Malyuzhinets G D 1969 Sov. Phys. Dokl. 14 118

    [51]

    Canevet G 1978 J. Sound Vib. 58 333Google Scholar

    [52]

    Jessel M J M, Mangiante G A 1972 J. Sound Vib. 23 383Google Scholar

    [53]

    Mangiante G A 1977 J. Acoust. Soc. Am. 61 1516Google Scholar

    [54]

    邹海山, 邱小军, 卢晶 2008 声学技术 27 621

    Zou H S, Qiu X J, Lu J 2008 Tech. Acoust. 27 621

    [55]

    邹海山, 邱小军 2009 南京大学学报(自然科学版) 45 57Google Scholar

    Zou H S, Qiu X J 2009 J. Nanjing Univ. (Nat. Sci. Ed.) 45 57Google Scholar

    [56]

    饶维 2011 硕士学位论文 (南京: 南京大学)

    Rao W 2011 M.S Thesis (Nanjing: Nanjing University) (in Chinese)

    [57]

    Qiu X, Zou H, Rao W 2009 Proceedings of the 2009 International Symposium on Active Control of Sound and Vibration Ottawa Canada, August 20−22, 2009 p239

    [58]

    邹海山 2007 博士学位论文 (南京: 南京大学)

    Zou H S 2007 Ph.D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [59]

    Williams E 1999 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (London: Academic Press) pp186−211

    [60]

    Xue J, Huang X, Lu J, Wang S, Tao J, Chen K 2015 The 44th Inter-noise & Noise-con Congress & Conference San Francisco USA, August 9−12, 2015 p2377

    [61]

    Pawelczyk M 2003 Int. J. Adapt. Control 17 785

    [62]

    Poletti M A, Abhayapala T D, Samarasinghe P 2012 J. Acoust. Soc. Am. 131 3814Google Scholar

    [63]

    Chang J H, Jacobsen F 2013 J. Acoust. Soc. Am. 133 2046Google Scholar

    [64]

    Tao J, Wang S, Qiu X, Pan J 2017 Appl. Acoust. 123 1Google Scholar

    [65]

    Huang X, Zou H, Qiu X 2015 Build. Environ. 94 891Google Scholar

    [66]

    Wang X, Koba Y, Ishikawa S, Kijmoto S 2014 The 43rd Inter-noise & Noise-con Congress & Conference Melbourne, Australia, November 16−19, 2014 p378

    [67]

    韩荣, 吴鸣, 王晓琳, 孙红灵, 杨军 2018 应用声学 37 664Google Scholar

    Han R, Wu M, Wang X, Sun H, Yang J 2018 Appl. Acoust. 37 664Google Scholar

  • [1] Wang Lei, Ma Xi-Yue, Chen Ke-An, Liu Tao. Low frequency sound absorption performance of large sized active micro-perforated panel absorber in free field. Acta Physica Sinica, 2023, 72(6): 064304. doi: 10.7498/aps.72.20222151
    [2] Du An-Tian, Liu Ruo-Tao, Cao Chun-Fang, Han Shi-Xian, Wang Hai-Long, Gong Qian. Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice. Acta Physica Sinica, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [3] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [4] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [5] Yang Sheng-Hui, Dong Ming-Yi, Qu Chao-Yue, Tian Xing-Cheng, Dong Jing, Wu Ye, Ma Xiao-Yan, Zhang Hong-Yu, Jiang Xiao-Shan, Ouyang Qun, Li Lan-Kun, Zheng Guo-Heng. Test study of detector modules based on monolithic active pixel sensor. Acta Physica Sinica, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [6] Liu Heng, Zhang Jun-Xiang, Fu Shi-Jie, Sheng Quan, Shi Wei, Yao Jian-Quan. Upper-laser-level lifetime measurement of rear earth dopant in active fiber. Acta Physica Sinica, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [7] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [8] Li Jian-Jun. Design of active region for GaAsP/AlGaAs tensile strain quantum well laser diodes near 800 nm wavelength. Acta Physica Sinica, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [9] Yu Qing, Bao Bo-Cheng, Xu Quan, Chen Mo, Hu Wen. Inductorless chaotic circuit based on active generalized memristors. Acta Physica Sinica, 2015, 64(17): 170503. doi: 10.7498/aps.64.170503
    [10] Li Hong-Xia, Jiang Yang, Bai Guang-Fu, Shan Yuan-Yuan, Liang Jian-Hui, Ma Chuang, Jia Zhen-Rong, Zi Yue-Jiao. Single mode optoelectronic oscillator assisted by active ring resonance cavity filtering. Acta Physica Sinica, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [11] Wang Yan, Zou Nan, Liang Guo-Long. A geometric calibration mehtod of hydrophone array with known sources in near field under strong multipath. Acta Physica Sinica, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [12] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [13] Bai Yan, Zhao Wei-Jiang, Ren De-Ming, Qu Yan-Chen, Liu Chuang, Yuan Jin-He, Qian Li-Ming, Chen Zhen-Lei. Heterodyne research on times delay of laser pulses based on active Fabry-Perot cavity. Acta Physica Sinica, 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [14] Yin Jing-Wei, Yang Sen, Du Peng-Yu, Yu Yun, Chen Yang. Code divided multiple access underwater acoustic communication based on active acoustic intensity average. Acta Physica Sinica, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [15] Chen Qian, Jiang Jian-Jun, Bie Shao-Wei, Wang Peng, Liu Peng, Xu Xin-Xin. Tunable composite absorber with active frequency selective surface. Acta Physica Sinica, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [16] Wang Tong-Xi, Guan Bao-Lu, Guo Xia, Shen Guang-Di. Study on the effects of carrier transport and parasitic parameters on the modulation response of tunnel regenerated vertical-cavity surface-emitting lasers with double active regions. Acta Physica Sinica, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [17] Zhou Mei, Zhao De-Gang. A new p-n structure ultraviolet photodetector with p--GaN active region. Acta Physica Sinica, 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [18] Xu Gang-Yi, Li Ai-Zhen. Interface phonons in the active core of a quantum cascade laser. Acta Physica Sinica, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] Xu Gang-Yi, Li Ai-Zhen. Optimal design of the active regions for InGaAsSb/AlGaAsSblong wavelength multi quantum well lasers. Acta Physica Sinica, 2004, 53(1): 218-225. doi: 10.7498/aps.53.218
    [20] LIAN PENG, YIN TAO, GAO GUO, ZOU DE-SHU, CHEN CHANG-HUA, LI JIAN-JUN, SHEN GUANG-DI, MA XIAO-YU, CHEN LIANG-HUI. NOVEL COUPLED MULTI-ACTIVE REGION HIGH POWER SEMICONDUCTOR LASERS CASCADED VIA T UNNEL JUNCTION. Acta Physica Sinica, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
Metrics
  • Abstract views:  9993
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2018
  • Accepted Date:  15 January 2019
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回