Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discriminative sparsity graph embedding based on histogram of rotated princial orientation gradients

Tong Ying Shen Yue-Hong Wei Yi-Min

Citation:

Discriminative sparsity graph embedding based on histogram of rotated princial orientation gradients

Tong Ying, Shen Yue-Hong, Wei Yi-Min
PDF
HTML
Get Citation
  • The unconstrained face images collected in the real environments include many complicated and changeable interference factors, and sparsity preserving projections (SPP) cannot well obtain the low-dimensional intrinsic structure embedded in the high-dimensional samples, which is important for subsequent sparse representation classifier (SRC). To deal with this problem, in this paper we propose a new method named discriminative sparsity graph embedding based on histogram of rotated principal orientation gradients (DSGE-HRPOG). Firstly, it extracts multi-scale and multi-directional gradient features of unconstrained face images by HRPOG feature descriptor and incorporates them into a discriminative feature dictionary of sparse representation classifier. Secondly, it seeks an optimal subspace of HRPOG feature dictionary in which the atoms in intra-classes are as compact as possible, while the atoms in inter-classes are as separable as possible by adopting the proposed DSGE dimensionality reduction method. Finally, an optimal algorithm is presented in which the low-dimensional projection and the sparse graph construction are iteratively updated, and the accuracy of unconstrained face recognition is further improved. Extensive experimental results on AR, Extended Yale B, LFW and PubFig databases demonstrate the effectiveness of our proposed method.
      Corresponding author: Tong Ying, tongying@njit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703201, KYTYJJG206), the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20170765), and the NIT fund for Young Scholar, China (Grant No.CKJB201602)
    [1]

    Qian J J, Luo L, Yang J, Zhang F L, Lin Z C 2015 Pattern Recognit. 48 3145Google Scholar

    [2]

    Chen Y, Yang J, Luo L, Zhang H M, Qian J J, Tai Y, Zhang J 2016 Pattern Recognit. 59 26Google Scholar

    [3]

    Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 210Google Scholar

    [4]

    Yang M, Zhang L, Feng X C, Zhang D 2014 Int. J. Comput. Vis. 109 209Google Scholar

    [5]

    Vu T H, Monga V 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p4428

    [6]

    Babaee M, Wolf T, Rigoll G 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p704

    [7]

    Huang K K, Dai D Q, Ren C X, Lai Z R 2017 IEEE Trans. Neural Netw. 28 1082Google Scholar

    [8]

    Zheng H, Tao D P 2015 Neurocomputing 162 9Google Scholar

    [9]

    Cai S J, Zuo W M, Zhang L, Feng X C, Wang P 2014 The 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p624

    [10]

    Yang J M, Yang M H 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 576Google Scholar

    [11]

    Li J, Tao D 2012 IEEE Trans. Image Process. 21 4830Google Scholar

    [12]

    Yan Y, Ricci E, Subramanian R 2014 IEEE Trans. Image Process. 23 5599Google Scholar

    [13]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 900Google Scholar

    [14]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 Pattern Recognit. 46 1865Google Scholar

    [15]

    Georgakis C, Panagakis Y, Pantic M 2016 IEEE Trans. Image Process. 25 2021Google Scholar

    [16]

    Zafeiriou S, Tzimiropoulos G, Petrou M, Stathaki T 2012 IEEE Trans. Neural Netw. 23 526Google Scholar

    [17]

    Tenenbaum J B, De Silva V, Langford J C 2000 Science 290 2319Google Scholar

    [18]

    Roweis S T, Saul L K 2000 Science 290 2323Google Scholar

    [19]

    Belkin M, Niyogi P 2003 Neural Comput. 15 1373Google Scholar

    [20]

    Lin B B, He X F, Zhang C Y, Ji M 2013 J. Mach. Learn. Res. 14 2945

    [21]

    Lin B B, Yang J, He X F, Ye J P 2014 Int. Conf. Mach. Learn. 145

    [22]

    He X, Niyogi P 2004 Advances in Neural Information Processing Systems 153

    [23]

    He X, Cai D, Yan S 2005 Proc. IEEE Int. Conf. Comput. Vis. 2 1208

    [24]

    Dornaika F, Raduncanu B 2013 The 26th IEEE Conference on Computer Vision and Pattern Recognition Portland, Oregon, USA, Jun 23-28, 2013 p862

    [25]

    Huang S C, Zhuang L 2016 Neurocomputing 218 373

    [26]

    Wan M H, Yang G W, Gai S, Yang Z J 2017 Multimed. Tools Appl. 76 355Google Scholar

    [27]

    Liang J Z, Chen C, Yi Y F, Xu X X, Ding M 2017 IEEE Access 17201

    [28]

    Wang R, Nie F P, Hong R C, Chang X J, Yang X J, Yu W Z 2017 IEEE Trans. Image Process. 26 5019Google Scholar

    [29]

    Yuan X F, Ge Z Q, Ye L J, Song Z H 2016 J. Chemometr. 30 430Google Scholar

    [30]

    Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 40Google Scholar

    [31]

    Belkin M, Niyogi P 2013 Neural Comput. 15 1373

    [32]

    Cortes C, Mohri M 2007 Advances in Neural Information Processing Systems Vancouver, Canada, December 3-8 2007 p305

    [33]

    Qiao L S, Chen S C, Tan X Y 2010 Pattern Recognit. 43 331Google Scholar

    [34]

    Lai Z H, Wong W K, Xu Y, Yang J, Zhang D 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 723Google Scholar

    [35]

    Yin J, Lai Z H, Zeng W M, Wei L 2018 Multimed. Tools Appl. 77 1069Google Scholar

    [36]

    Zhang Y P, Xiang M, Yang B 2016 Neurocomputing 173 518Google Scholar

    [37]

    Lu G F, Jin Z, Zou J 2012 Knowl-Based Syst. 31 119Google Scholar

    [38]

    Wei L, Xu F F, Wu A H 2014 Knowl-Based Syst. 136

    [39]

    Lou S J, Zhao X M, Chuang Y L, Yu H T, Zhang S Q 2016 Neurocomputing 173 290Google Scholar

    [40]

    Yang J, Chu D L, Zhang L, Xu Y, Yang J Y 2013 IEEE Trans. Neural Netw. 24 1023Google Scholar

    [41]

    Zheng J W, Yang P, Chen S Y, Shen G J, Wang W L 2017 IEEE Trans. Image Process. 26 2408Google Scholar

    [42]

    Gao Q X, Wang Q Q, Huang Y F, Gao X B 2015 IEEE Trans. Image Process. 24 5684Google Scholar

    [43]

    Zhang G Q, Sun H J, Xia G Y, Sun Q S 2016 IEEE Trans. Image Process. 25 4271

    [44]

    Ren C X, Dai D Q, Li X X, Lai Z R 2014 IEEE Trans. on Image Processing 23 725Google Scholar

    [45]

    Yang M, Zhang L, Shiu S C K, Zhang D 2012 IEEE Trans. on Information Forensics and Security 7 1738Google Scholar

    [46]

    Dalal N, Triggs B 2005 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, California, June 20-26 2005 p886

    [47]

    Tian S X, Bhattacharya U, Lu S J, Su B L, Wang Q Q, Wei X H, Lu Y, Tan C L 2016 Pattern Recognit. 51 125Google Scholar

    [48]

    Tzimiropoulos G, Zafeiriou S, Pantic M 2012 IEEE Trans. Pattern Anal. Mach. Intell. 34 2454Google Scholar

    [49]

    Ding C X, Choi J, Tao D C, Davis L S 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 518Google Scholar

    [50]

    Weng D W, Wang Y L, Gong M M, Tao D C 2015 IEEE Trans. Image Process. 24 2287Google Scholar

    [51]

    Yin J, Zeng W M, Wei L 2016 Knowl-Based Syst. 99 112Google Scholar

    [52]

    Huang K K, Dai D Q, Ren C X 2017 Pattern Recognit. 62 87Google Scholar

    [53]

    Liu Y, Gao Q X, Miao S, Gao X B, Nie F, Li Y S 2017 IEEE Trans. Image Process. 26 684Google Scholar

    [54]

    Wang H, Nie F P, Huang H 2014 The 31st International Conference on Machine Learning Beijing, China, June 21-26, 2014 p1836

    [55]

    Learned-Miller E, Huang G B, Roy C A, Li H X, Hua G 2016 Advances in Face Detection and Facial Image Analysis. 189

    [56]

    Kumar N, Berg A C, Belhumeur P N, Nayar S K 2009 Proc. IEEE Int. Conf. Comput. Vis. 365

    [57]

    Yang M, Zhang L, Yang J, Zhang D 2013 IEEE Trans. Image Process. 1753

    [58]

    Tang X, Feng G C, Cai J X 2014 Neurocomputing 402

    [59]

    Li F, Jiang M Y 2018 Neural Process. Lett. 47 661

    [60]

    Tao D P, Guo Y N, Li Y T, Gao X B 2018 IEEE Trans. Image Process. 27 325Google Scholar

  • 图 1  本文算法的实现流程

    Figure 1.  Flow chart of the proposed algorithm.

    图 2  3-HRPOG算子的梯度卷积模板示意图 (a) ${h_x}$模板; (b) ${h_y}$模板

    Figure 2.  Gradient convolution masks of 3-HRPOG feature descriptor: (a) ${h_x}$ mask; (b) ${h_y}$ mask.

    图 3  3-HRPOG算子的旋转梯度卷积模板

    Figure 3.  Rotated gradient convolution masks of 3-HRPOG feature descriptor.

    图 4  旋转不变性分析 (a) 原图及HOG和3-HRPOG的梯度矢量值; (b) 旋转${45^ \circ }$图像及HOG和3-HRPOG的梯度矢量值

    Figure 4.  Rotation invariance analysis: (a) Original binary image and gradient vectors of HOG and 3-HRPOG; (b) rotated ${45^ \circ }$ binary image and gradient vectors of HOG and 3-HRPOG.

    图 5  5-HRPOG算子的旋转主方向梯度模板

    Figure 5.  Rotated dominant direction gradient masks of 5-HRPOG feature descriptor.

    图 6  Ms-HRPOG特征提取示意图

    Figure 6.  The sketch of Ms-HRPOG feature descriptor.

    图 7  LFW数据库中某一图像的SPP稀疏重构权值

    Figure 7.  Sparsity reconstruction weights of one sample with SPP algorithm on the LFW database.

    图 8  AR数据库部分样本图像

    Figure 8.  Samples of one person in the AR database.

    图 9  Extended Yale B数据库部分样本图像

    Figure 9.  Samples of one person in the Extended Yale B database

    图 10  Extended Yale B数据库部分遮挡样本图像

    Figure 10.  Occlusion samples of one person in the Extended Yale B database.

    图 11  部分样本图像 (a) LFW数据库部分样本; (b) PubFig数据库部分样本

    Figure 11.  Samples of one person: (a) LFW database; (b) PubFig database.

    图 12  不同初始投影矩阵${{{P}}_0}$的识别率

    Figure 12.  Recognition rates based on different initial matrix${{{P}}_0}$.

    图 13  目标函数收敛曲线

    Figure 13.  Convergence curve of the objective function.

    表 1  AR数据库在表情、光照和时间干扰因素下的实验结果

    Table 1.  Experimental results on the AR database with the interference factors of expression, illumination and time.

    MethodLPP[22]NPE[23]SPP[33]DSNPE[37]DP-NFL[51]SRC-DP[40]DSGE-pixelsDSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    Recognition Rate/%67.1468.6968.2176.0771.875.276.7988.4588.2188.81
    Dimension1153112201406363322777754774
    DownLoad: CSV

    表 2  AR数据库在遮挡干扰因素下的实验结果

    Table 2.  Experimental results of AR database with the occlusion interference.

    Experiment 1/%Experiment 2/%Experiment 3/%
    LPP[22]71.3968.6869.46
    NPE[23]72.6471.8171.08
    SPP[33]75.9072.9274.07
    DSNPE[37]80.2878.2678.14
    SRC-DP[40]78.3576.5077.80
    SRC-FDC[42]80.9079.9080.30
    DSGE-pixels79.0378.7582.65
    DSGE-HRPOG
    (3-HRPOG)
    88.5489.5190.53
    DSGE-HRPOG
    (5-HRPOG)
    89.3189.5890.98
    DSGE-HRPOG
    (Ms-HRPOG)
    89.3190.0091.06
    DownLoad: CSV

    表 3  AR数据库在混合干扰因素下的实验结果

    Table 3.  Experimental results on the AR database with the mix interference factors.

    Mean/%Std/%Dimension
    LPP[22]95.900.38141
    NPE[23]95.870.55311
    SPP[33]90.390.90151
    DSNPE[37]98.020.33200
    Wang[54]97.850.93
    Gao[53]98.590.53
    DSGE-pixels98.450.27202
    DSGE-HRPOG
    (3-HRPOG)
    99.450.171350
    DSGE-HRPOG
    (5-HRPOG)
    99.370.121297
    DSGE-HRPOG
    (Ms-HRPOG)
    99.550.131385
    DownLoad: CSV

    表 4  Extended Yale B数据库在光照干扰因素下的实验结果

    Table 4.  Experimental results of Extended Yale B database with the illumination interference.

    MethodLPP[22]NPE[23]SPP[33]DSNPE[37]GRSDA[39]RCDA[52]DSGE-pixelsDSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    Recognition Rate/%87.8689.3185.7985.7482.79286.0391.3589.7792.48
    Dimension65160958526683355345351
    DownLoad: CSV

    表 5  Extended Yale B数据库在遮挡干扰因素下的实验结果

    Table 5.  Experimental results of Extended Yale B database with the occlusion interference.

    Experiment 1/%Experiment 2/%
    LPP[22]95.51 ± 0.4096.78 ± 0.72
    NPE[23]96.43 ± 0.2397.85 ± 0.31
    SPP[33]92.57 ± 0.8493.05 ± 0.77
    DSNPE[37]94.18 ± 0.4895.29 ± 0.54
    Gao[53]86.91 ± 1.0788.23 ± 0.91
    DSGE-pixels95.83 ± 0.6696.21 ± 0.21
    DSGE-HRPOG(3-HRPOG)97.30 ± 0.2097.73 ± 0.35
    DSGE-HRPOG (5-HRPOG)96.85 ± 0.3896.93 ± 0.60
    DSGE-HRPOG G(Ms-HRPOG)97.98 ± 0.5098.10 ± 0.31
    DownLoad: CSV

    表 6  LFW和PubFig数据库的实验结果

    Table 6.  Experimental results on the LFW database and PubFig database.

    LFW/%PubFig/%
    LPP[22]35.3224.00
    NPE[23]35.1925.00
    SPP[33]31.5229.00
    DSNPE[37]44.0530.90
    WGSC[58]47.6037.50
    RSRC[3]42.8047.00
    RRC[57]53.2042.20
    IRGSC[41]56.3048.50
    DSGE-pixels51.5238.60
    DSGE-HOG69.6249.00
    DSGE-HRPOG(3-HRPOG)76.7154.20
    DSGE-HRPOG (5-HRPOG)76.5853.30
    DSGE-HRPOG (Ms-HRPOG)73.8053.70
    DownLoad: CSV

    表 7  PubFig数据库上有联合优化和无联合优化的实验结果

    Table 7.  Experimental results with joint optimization and without joint optimization on the PubFig database.

    DSGE-HRPOG
    3-HRPOG5-HRPOGMs-HRPOG
    with joint optimization54.20 (630)53.30 (473)53.70 (514)
    without joint optimization53.50 (514)50.90 (423)53.20 (514)
    DownLoad: CSV
  • [1]

    Qian J J, Luo L, Yang J, Zhang F L, Lin Z C 2015 Pattern Recognit. 48 3145Google Scholar

    [2]

    Chen Y, Yang J, Luo L, Zhang H M, Qian J J, Tai Y, Zhang J 2016 Pattern Recognit. 59 26Google Scholar

    [3]

    Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 210Google Scholar

    [4]

    Yang M, Zhang L, Feng X C, Zhang D 2014 Int. J. Comput. Vis. 109 209Google Scholar

    [5]

    Vu T H, Monga V 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p4428

    [6]

    Babaee M, Wolf T, Rigoll G 2016 The 23rd IEEE International Conference on Image Processing Phoenix, Arizona, USA, September 25-28, 2016 p704

    [7]

    Huang K K, Dai D Q, Ren C X, Lai Z R 2017 IEEE Trans. Neural Netw. 28 1082Google Scholar

    [8]

    Zheng H, Tao D P 2015 Neurocomputing 162 9Google Scholar

    [9]

    Cai S J, Zuo W M, Zhang L, Feng X C, Wang P 2014 The 13th European Conference on Computer Vision Zurich, Switzerland, September 6−12, 2014 p624

    [10]

    Yang J M, Yang M H 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 576Google Scholar

    [11]

    Li J, Tao D 2012 IEEE Trans. Image Process. 21 4830Google Scholar

    [12]

    Yan Y, Ricci E, Subramanian R 2014 IEEE Trans. Image Process. 23 5599Google Scholar

    [13]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 900Google Scholar

    [14]

    Yang M, Zhang L, Shiu S C K, Zhang D 2013 Pattern Recognit. 46 1865Google Scholar

    [15]

    Georgakis C, Panagakis Y, Pantic M 2016 IEEE Trans. Image Process. 25 2021Google Scholar

    [16]

    Zafeiriou S, Tzimiropoulos G, Petrou M, Stathaki T 2012 IEEE Trans. Neural Netw. 23 526Google Scholar

    [17]

    Tenenbaum J B, De Silva V, Langford J C 2000 Science 290 2319Google Scholar

    [18]

    Roweis S T, Saul L K 2000 Science 290 2323Google Scholar

    [19]

    Belkin M, Niyogi P 2003 Neural Comput. 15 1373Google Scholar

    [20]

    Lin B B, He X F, Zhang C Y, Ji M 2013 J. Mach. Learn. Res. 14 2945

    [21]

    Lin B B, Yang J, He X F, Ye J P 2014 Int. Conf. Mach. Learn. 145

    [22]

    He X, Niyogi P 2004 Advances in Neural Information Processing Systems 153

    [23]

    He X, Cai D, Yan S 2005 Proc. IEEE Int. Conf. Comput. Vis. 2 1208

    [24]

    Dornaika F, Raduncanu B 2013 The 26th IEEE Conference on Computer Vision and Pattern Recognition Portland, Oregon, USA, Jun 23-28, 2013 p862

    [25]

    Huang S C, Zhuang L 2016 Neurocomputing 218 373

    [26]

    Wan M H, Yang G W, Gai S, Yang Z J 2017 Multimed. Tools Appl. 76 355Google Scholar

    [27]

    Liang J Z, Chen C, Yi Y F, Xu X X, Ding M 2017 IEEE Access 17201

    [28]

    Wang R, Nie F P, Hong R C, Chang X J, Yang X J, Yu W Z 2017 IEEE Trans. Image Process. 26 5019Google Scholar

    [29]

    Yuan X F, Ge Z Q, Ye L J, Song Z H 2016 J. Chemometr. 30 430Google Scholar

    [30]

    Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 40Google Scholar

    [31]

    Belkin M, Niyogi P 2013 Neural Comput. 15 1373

    [32]

    Cortes C, Mohri M 2007 Advances in Neural Information Processing Systems Vancouver, Canada, December 3-8 2007 p305

    [33]

    Qiao L S, Chen S C, Tan X Y 2010 Pattern Recognit. 43 331Google Scholar

    [34]

    Lai Z H, Wong W K, Xu Y, Yang J, Zhang D 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 723Google Scholar

    [35]

    Yin J, Lai Z H, Zeng W M, Wei L 2018 Multimed. Tools Appl. 77 1069Google Scholar

    [36]

    Zhang Y P, Xiang M, Yang B 2016 Neurocomputing 173 518Google Scholar

    [37]

    Lu G F, Jin Z, Zou J 2012 Knowl-Based Syst. 31 119Google Scholar

    [38]

    Wei L, Xu F F, Wu A H 2014 Knowl-Based Syst. 136

    [39]

    Lou S J, Zhao X M, Chuang Y L, Yu H T, Zhang S Q 2016 Neurocomputing 173 290Google Scholar

    [40]

    Yang J, Chu D L, Zhang L, Xu Y, Yang J Y 2013 IEEE Trans. Neural Netw. 24 1023Google Scholar

    [41]

    Zheng J W, Yang P, Chen S Y, Shen G J, Wang W L 2017 IEEE Trans. Image Process. 26 2408Google Scholar

    [42]

    Gao Q X, Wang Q Q, Huang Y F, Gao X B 2015 IEEE Trans. Image Process. 24 5684Google Scholar

    [43]

    Zhang G Q, Sun H J, Xia G Y, Sun Q S 2016 IEEE Trans. Image Process. 25 4271

    [44]

    Ren C X, Dai D Q, Li X X, Lai Z R 2014 IEEE Trans. on Image Processing 23 725Google Scholar

    [45]

    Yang M, Zhang L, Shiu S C K, Zhang D 2012 IEEE Trans. on Information Forensics and Security 7 1738Google Scholar

    [46]

    Dalal N, Triggs B 2005 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, California, June 20-26 2005 p886

    [47]

    Tian S X, Bhattacharya U, Lu S J, Su B L, Wang Q Q, Wei X H, Lu Y, Tan C L 2016 Pattern Recognit. 51 125Google Scholar

    [48]

    Tzimiropoulos G, Zafeiriou S, Pantic M 2012 IEEE Trans. Pattern Anal. Mach. Intell. 34 2454Google Scholar

    [49]

    Ding C X, Choi J, Tao D C, Davis L S 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 518Google Scholar

    [50]

    Weng D W, Wang Y L, Gong M M, Tao D C 2015 IEEE Trans. Image Process. 24 2287Google Scholar

    [51]

    Yin J, Zeng W M, Wei L 2016 Knowl-Based Syst. 99 112Google Scholar

    [52]

    Huang K K, Dai D Q, Ren C X 2017 Pattern Recognit. 62 87Google Scholar

    [53]

    Liu Y, Gao Q X, Miao S, Gao X B, Nie F, Li Y S 2017 IEEE Trans. Image Process. 26 684Google Scholar

    [54]

    Wang H, Nie F P, Huang H 2014 The 31st International Conference on Machine Learning Beijing, China, June 21-26, 2014 p1836

    [55]

    Learned-Miller E, Huang G B, Roy C A, Li H X, Hua G 2016 Advances in Face Detection and Facial Image Analysis. 189

    [56]

    Kumar N, Berg A C, Belhumeur P N, Nayar S K 2009 Proc. IEEE Int. Conf. Comput. Vis. 365

    [57]

    Yang M, Zhang L, Yang J, Zhang D 2013 IEEE Trans. Image Process. 1753

    [58]

    Tang X, Feng G C, Cai J X 2014 Neurocomputing 402

    [59]

    Li F, Jiang M Y 2018 Neural Process. Lett. 47 661

    [60]

    Tao D P, Guo Y N, Li Y T, Gao X B 2018 IEEE Trans. Image Process. 27 325Google Scholar

  • [1] Guo Yan, Lv Heng, Ding Chun-Ling, Yuan Chen-Zhi, Jin Rui-Bo. Fractional-order vortex beam diffraction process recognition using machine learning. Acta Physica Sinica, 2025, 74(1): 1-8. doi: 10.7498/aps.74.20241458
    [2] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] Dai Yu-Jia, Li Ming-Liang, Song Chao, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan. Accuracy improvement of Fe element in aluminum alloy by laser induced breakdown spectroscopy under spatial confinement combined with gradient descent. Acta Physica Sinica, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [4] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [5] Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan. Optimization of Ga content gradient in Cu(In,Ga)Se2 solar cells through machine learning and device simulation. Acta Physica Sinica, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [6] Liu Liang-You, Gao Song, Li Sha, Li Zhao-Tong, Xia Yi-Fan. Research progress of diffusion sensitive gradient field encoding schemes in magnetic resonance diffusion tensor imaging. Acta Physica Sinica, 2020, 69(3): 038702. doi: 10.7498/aps.69.20191346
    [7] Zhang Yan-Yan, Chen Su-Ting, Ge Jun-Xiang, Wan Fa-Yu, Mei Yong, Zhou Xiao-Yan. Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization. Acta Physica Sinica, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [8] Jiao Bao-Bao. Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix. Acta Physica Sinica, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [9] Liu Zhen, Sun Chao, Liu Xiong-Hou, Guo Qi-Li. Robust Capon beamforming with weighted sparse constraint. Acta Physica Sinica, 2016, 65(10): 104303. doi: 10.7498/aps.65.104303
    [10] Zheng Wei-Zhen, Zhao Bin, Hu Guang-Yue, Zheng Jian. Influence of spatial geometrical curvature on nonlocal electron heat transport in expanding plasmas. Acta Physica Sinica, 2015, 64(19): 195201. doi: 10.7498/aps.64.195201
    [11] Wen Fang-Qing, Zhang Gong, Ben De. A recovery algorithm for multitask compressive sensing based on block sparse Bayesian learning. Acta Physica Sinica, 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [12] Gao Song, Zhu Yan-Chun, Li Shuo, Bao Shang-Lian. An optimal direction strategy of diffusion sensitive gradient mangnetic fields in magnetic resonance diffusion tensor imaging based on generalized Fibonacci sequence. Acta Physica Sinica, 2014, 63(4): 048704. doi: 10.7498/aps.63.048704
    [13] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [14] Wang Lin-Yuan, Zhang Han-Ming, Cai Ai-Long, Yan Bin, Li Lei, Hu Guo-En. Image reconstruction algorithm based on inexact alternating direction total-variation minimization. Acta Physica Sinica, 2013, 62(19): 198701. doi: 10.7498/aps.62.198701
    [15] Song Chang-Xin, Ma Ke, Qin Chuan, Xiao Peng. Infrared image segmentation based on clustering combined with sparse coding and spatial constraints. Acta Physica Sinica, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [16] Hao Chong-Qing, Wang Jiang, Deng Bin, Wei Xi-Le. Estimating topology of complex networks based on sparse Bayesian learning. Acta Physica Sinica, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [17] Liu Hui, Yang Jun-An, Wang Yi. A novel approach to research on feature extraction of acoustictargets based on manifold learning. Acta Physica Sinica, 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [18] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] Zhang Bian-Li, Chang Sheng-Jiang, Li Jiang-Wei, Wang Kai, Shen Hui-Ting, Zhang Yan-Xin, Zhai Hong-Chen. Intelligent control of video monitoring system based on the color histogram analysis. Acta Physica Sinica, 2006, 55(12): 6399-6404. doi: 10.7498/aps.55.6399
    [20] HUO YU-PING. UNITARY TRANSFORMATION AND GENERAL LINEAR TRANSFORMATION BY THE OPTICAL METHOD (Ⅳ)——THE PATTERN RECOGNITION AND PROJECTION OPERATOR. Acta Physica Sinica, 1980, 29(2): 153-160. doi: 10.7498/aps.29.153
Metrics
  • Abstract views:  8758
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2019
  • Accepted Date:  29 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回