Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel method of heart rate variability measurement

Shao Shi-Liang Wang Ting Song Chun-He Cui E-Nuo Zhao Hai Yao Chen

Citation:

A novel method of heart rate variability measurement

Shao Shi-Liang, Wang Ting, Song Chun-He, Cui E-Nuo, Zhao Hai, Yao Chen
PDF
HTML
Get Citation
  • The complex fluctuation of heart rate variability reflects the autonomous regulation function of the heart. In this paper, a novel method of measuring the heart rate variability is proposed. Firstly, the heart rate variability signal is decomposed by the improved complete ensemble empirical mode decomposition with adaptive noise method, and the multiple intrinsic mode functions are obtained, and the bubble entropy of each intrinsic mode function is calculated to obtain an entropy value vector. Then, the vector is mapped to a network based on a limited penetrable horizontal visibility graph method. By calculating various characteristic parameters of the network, the coupling relationship between the nonlinear features of heart rate variability in different time-frequency scale states are studied. The characteristic parameters include mean value of aggregation coefficient (MC), the characteristic path length (CL), the topological entropy of network (TE), the network level weighted bubble value (WB), and the pseudo mean value of node weight (PW). Firstly, the heart rate variabilities of 29 patients with congestive heart failure and 29 normal sinus heart rhythm subjects are analyzed by time domain, frequency domain and ICBN analysis method, the T test is used for statistical analysis, and Fisher discriminant method is used for classification. The results show that the time domain triangular index HRVTI, frequency domain index LF/HF, WB, PW and CL in ICBN have statistical differences. The accuracy rate of recognition model based on WB, CL, frequency domain index LF/HF and Fisher discriminant method is 89.66%. Secondly, the heart rate variabilities of 43 patients with atrial fibrillation arrhythmia and another 43 normal sinus heart rhythm subjects are analyzed by the same methods, including the time domain analyzed method, frequency domain analyzed method, and ICBN analyzed method. Then, the T test is also used for statistical analysis, and Fisher discriminant method is used for classification. The results show that using the time domain index pNN5 and RMSSD, frequency index LF/HF, ICBN index WB and PW as the feature vectors, and the Fisher discriminant mode as the classifier, the accuracy rate of recognition for atrial fibrillation arrhythmia is 91.86%. From these results it is concluded that the ICBN method provides a new idea for the heart rate variability measurement.
      Corresponding author: Shao Shi-Liang, shaoshiliangswu@163.com
    • Funds: Project supported by the Major Scientific and Technological Innovation Projects, China (Grant No. N161608001).
    [1]

    Narin A, Isler Y, Ozer M, Perc M 2018 Phys. A: Stat. Mech. Appl. 509 56Google Scholar

    [2]

    司峻峰, 黄晓林, 周玲玲, 刘红星 2014 物理学报 54 40504

    Si J F, Huang X L, Zhou L L, Liu H X 2014 Acta Phys. Sin. 54 40504

    [3]

    Wendt H, Abry P, Kiyono K, Hayano J, Watanabe E, Yamamoto Y 2019 IEEE Trans. Biomed. Eng. 66 80Google Scholar

    [4]

    Wang Y, Wei S S, Zhang S, Zhang Y T, Zhao L N, Liu C Y, Murray A 2018 Biomed. Signal Process. Control 42 30Google Scholar

    [5]

    Pernice R, Javorka M, Krohova J, Czippelova B 2019 Med. Biol. Eng. Comput. 57 1247Google Scholar

    [6]

    Deus L A, Sousa C V, Rosa T S, Souto J M 2019 Physiol. Behav. 205 39Google Scholar

    [7]

    Li Y F, Pan W F, Li K Y, Jiang Q, Liu G Z 2019 IEEE J. Biomedical Health Informat. 23 175Google Scholar

    [8]

    刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱 2014 物理学报 19 198703Google Scholar

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 19 198703Google Scholar

    [9]

    Asha N D, Joseph K P 2013 J. Mech. Med. Biol. 13 1350061Google Scholar

    [10]

    Xia J N, Shang P J, Wang J 2013 Nonlinear Dyn. 74 1183Google Scholar

    [11]

    Singh V, Gupta A, Sohal J S, Singh A 2019 Med. Biol. Eng. Comput. 57 741Google Scholar

    [12]

    Alvarez D, Sanchez-Fernandez A, Andres-Blanco A M, Gutierrez-Tobal G C, Vaquerizo-Villar F, Barroso-Garcia V, Hornero R 2019 Entropy 21 381Google Scholar

    [13]

    Li T B, Yao W P, Wu M, Shi Z R, Wang J, Ning X B 2017 Phys. A: Stat. Mech. Appl. 471 492Google Scholar

    [14]

    Manis G, Aktaruzzaman M, Sassi R 2017 IEEE Trans. Biomed. Eng. 64 2711Google Scholar

    [15]

    Acharya U R, Fujita H, Sudarshan V K, Oh S L, Muhammad A, Koh J E W, Tan J H, Chua C K, Chua K P, Tan R S 2016 Neural Comput. Appl. 28 3073

    [16]

    Gao Z, Cai Q, Yang Y, Dang W, Zhang S 2016 Sci. Rep. 6 35622Google Scholar

    [17]

    霍铖宇, 马小飞, 宁新宝 2017 物理学报 66 160502Google Scholar

    Huo C Y, Ma X F, Ning X B 2017 Acta Phys. Sin. 66 160502Google Scholar

    [18]

    Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215

    [19]

    Lin Y C, Lin Y H, Lo M T, Peng C K, Huang N E, Yang C C H, Kuo T B J 2016 Chaos 26 023109Google Scholar

    [20]

    Clifford G D, Tarassenko L 2005 IEEE Trans. Biomed. Eng. 52 630Google Scholar

    [21]

    Colominas M A, Schlotthauer G, Torres M E 2014 Biomed. Signal Process. Control 14 19Google Scholar

    [22]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [23]

    刘晓, 赵海, 张君, 王进法 2016 东北大学学报(自然科学版) 37 486Google Scholar

    Liu X, Zhao H, Zhang J, Wang J F 2016 Journal of Northeastern University (Natural Science) 37 486Google Scholar

    [24]

    Narin A, Isler Y, Ozer M, Perc M 2018 Physica A 509 65

  • 图 1  HRV分析框架图

    Figure 1.  Framework of the HRV analysis.

    图 2  HRV信号获得示意图

    Figure 2.  Schematic of obtaining HRV signal.

    图 3  ICBN分析方法实现过程框图

    Figure 3.  Implementation process of ICBN analysis method.

    图 4  NSR1和CHF这2组对象具有极显著差异的指标的均值与标准差

    Figure 4.  Mean and variance of the indicators with very significant differences between the two groups of NSR1 and CHF.

    图 5  NSR2和AF这2组对象具有极显著差异的指标的均值与标准差

    Figure 5.  Mean and variance of the indicators with very significant differences between the two groups of NSR2 and AF.

    表 1  时域分析统计特征

    Table 1.  Statistical features in time domain.

    指标单位描述与定义
    SDNN${\rm{ms}}$相邻正常心跳间隔的标准差${\rm{SDNN}} = {\sqrt {\dfrac{1}{N}\displaystyle \sum \limits_{i = 1}^N \left( {{\rm{RR}}{s_i} - \dfrac{1}{N}\mathop \sum \limits_{i = 1}^N {\rm{RR}}{s_i}} \right)} ^{}}$
    RMSSDms相邻正常心跳间隔差值的平方和均值的均方根${\rm{RMSSD}} = \sqrt {\dfrac{1}{{N - 1}}\displaystyle \sum \limits_{i = 1}^{N - 1} {{\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right)}^2}} $
    pNN50%相邻正常心跳间隔差值超过50毫秒的比例${\rm{PNN}}50 = \dfrac{{{\rm{num}}\left[ {\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right) > 50{\rm{ ms}}} \right]}}{{N - 1}}$
    HRVTi相邻正常心跳间隔的总个数除以相邻正常心跳间隔直方图的高度
    DownLoad: CSV

    表 2  频域分析统计特征

    Table 2.  Statistical features in frequency domain.

    指标单位描述与定义频率范围
    Total power${\rm{m}}{{\rm{s}}^2}$所有频率范围的功率谱总和 ≤ 0.4 Hz
    VLF${\rm{m}}{{\rm{s}}^2}$甚低频范围内的功率谱0.003—0.040 Hz
    LF${\rm{m}}{{\rm{s}}^2}$低频范围内的功率谱0.04—0.15 Hz
    HF${\rm{m}}{{\rm{s}}^2}$高频范围内的功率谱0.15—0.40 Hz
    LF/HF%LF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$ 与HF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$的比值
    DownLoad: CSV

    表 3  NSR1和CHF患者不同分析方法下的结果

    Table 3.  Statistical analysis results of HRV index under different analysis methods.

    指标NSR1(mean$ \pm $SD)CHF(mean$ \pm $SD)标准误差差值的95%置信区间$p$
    下限上限
    ICBNWB21.853$ \pm $1.47927.835$ \pm $7.7413.0508.9140***
    PW0.563$ \pm $0.0510.455$ \pm $0.103–0.151–0.0660***
    TE0.956$ \pm $0.0190.937$ \pm $0.037–0.034–0.0050.009**
    CL1.135$ \pm $0.1330.954$ \pm $0.194–0.268–0.0940***
    MC0.684$ \pm $0.0350.705$ \pm $0.026–0.038–0.0060.009**
    时域SDNN81.507$ \pm $38.56659.535$ \pm $44.76–43.9510.0070.05
    pNN5011.476$ \pm $14.67610.772$ \pm $14.110–8.2776.8700.853
    RMSSD51.172$ \pm $54.89560.307$ \pm $58.497–20.70738.9760.542
    HRVTi6.886$ \pm $2.4524.093$ \pm $1.494–3.861–1.7250***
    频域TP1.809$ \pm $4.9091.443$ \pm $4.052–2.7342.0010.758
    VLF0.0003$ \pm $0.4481.387$ \pm $6.214–1.2653.3700.367
    LF0.212$ \pm $0.3330.119$ \pm $0.316–0.2630.0780.281
    HF1.597$ \pm $4.6081.322$ \pm $3.745–2.4831.9340.804
    LF/HF0.288$ \pm $0.1840.108$ \pm $0.083–0.255–0.1050***
    注: *, **, ***分别代表$p < 0.05$$p < 0.01$, $p < 0.001$.
    DownLoad: CSV

    表 4  不同特征的CHF识别性能对比

    Table 4.  Performance comparisons of different indices for CHF recognition

    指标TPTNFPFNAccSenSpeAUC
    WB192710279.3190.4872.9781.72
    PW192410574.1479.1770.5975.53
    CL20239674.1476.9271.8874.40
    HRVTi231961072.4169.7076.0072.85
    LF/HF251741272.4175.6880.9578.32
    注: TP, 被判定为CHF病人的数量; TN, 被判定为NSR1对象的数量; FP, NSR1对象被判定为CHF病人的数量; FN, CHF病人被判定为NSR1对象的数量; 正确率${\rm{Acc}} = \dfrac{{{\rm{TP + TN}}}}{{{\rm{TP \!+\! FP \!+\! TN \!+\! FN}}}} \times 100\% $; 灵敏度${\rm{Sen}} = \dfrac{{T{\rm{P}}}}{{T{\rm{P}} + {\rm{FN}}}} \times 100\% $; 特异度${\rm{Spe}} = \dfrac{{{\rm{TN}}}}{{{\rm{FP \!+\! TN}}}} \times 100\% $; ${\rm{AUC}} = \dfrac{1}{2}\left( {\dfrac{{{\rm{TP}}}}{{{\rm{TP + FN}}}}{\rm{ + }}\dfrac{{{\rm{TN}}}}{{{\rm{TN + FP}}}}} \right) \times 100\% $.
    DownLoad: CSV

    表 5  不同特征组合的CHF识别性能对比

    Table 5.  Performance comparisons of different indices for CHF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB&CL&LF/HF25274289.6692.5987.189.85
    WB&PW&CL&HRVTi&LF/HF24275287.9392.3184.3888.35
    WB&PW&CL&LF/HF24275287.9392.3184.3888.35
    WB&PW22297087.9310080.5690.28
    WB&CL&HRVTi&LF/HF25254486.2086.2186.2186.21
    WB&PW&HRVTi&LF/HF24265386.2088.8983.8786.38
    WB&CL&HRVTi25254486.2086.2186.2186.21
    WB&PW&HRVTi24265386.2088.8983.8786.38
    DownLoad: CSV

    表 6  NSR2和AF患者在不同分析方法下的结果

    Table 6.  Statistical analysis results of HRV index under different analysis methods

    指标NSR2(mean$ \pm $SD)AF(mean$ \pm $SD)标准误差差值的95%置信区间$p$
    下限上限
    ICBNWB21.483$ \pm $1.36724.243$ \pm $3.1051.7313.7890***
    PW0.567$ \pm $0.0740.454$ \pm $0.090–0.148–0.0770***
    TE0.941$ \pm $0.0500.960$ \pm $0.0100.0040.0350.013*
    CL1.113$ \pm $0.1460.999$ \pm $0.170–0.183–0.0470.001**
    MC0.687$ \pm $0.0430.664$ \pm $0.032–0.024–0.0080.04*
    时域SDNN74.698$ \pm $26.193139.016$ \pm $62.48010.33143.7730***
    pNN5010.123$ \pm $9.61045.495$ \pm $30.6874.90425.6200***
    RMSSD36.402$ \pm $19.003170.926$ \pm $97.98015.220104.2560***
    HRVTi7.735$ \pm $3.2106.049$ \pm $2.488–2.918–0.4550.008**
    频域TP0.615$ \pm $0.61213.493$ \pm $19.3697.00018.7540.001**
    VLF0.0002$ \pm $0.00030.017$ \pm $0.063–2.25636.1470.083
    LF0.157$ \pm $0.1541.204$ \pm $1.6200.5531.5400.002**
    HF0.458$ \pm $0.51512.272$ \pm $17.9086.38117.2470.001**
    LF/HF0.515$ \pm $0.4190.126$ \pm $0.059–0.519–0.2590***
    注: *, **, ***分别代表$p < 0.05$, $p < 0.01$, $p < 0.001$.
    DownLoad: CSV

    表 7  不同特征的AF识别性能对比

    Table 7.  Performance comparisons of different indices for AF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB303713677.9183.3374.0078.67
    PW304213183.7296.7776.3686.57
    SDNN313412975.5877.5073.9175.71
    pNN50283915477.9187.5072.2279.86
    RMSSD2933141072.0974.3670.2172.29
    LFHF422411976.7468.8596.0082.43
    DownLoad: CSV

    表 8  不同特征的AF识别性能对比

    Table 8.  Performance comparisons of different indices for AF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB&PW&pNN50&RMSSD&LFHF38415291.8695.0089.1392.07
    WB&PW&SDNN&LFHF38405390.7092.6888.8990.79
    WB&PW&RMSSD&LFHF38405390.7092.6888.8990.79
    WB&PW&SDNN&RMSSD37416290.7094.8787.2391.05
    WB&PW&SDNN&pNN50&RMSSD36427190.7097.3085.7191.51
    DownLoad: CSV
  • [1]

    Narin A, Isler Y, Ozer M, Perc M 2018 Phys. A: Stat. Mech. Appl. 509 56Google Scholar

    [2]

    司峻峰, 黄晓林, 周玲玲, 刘红星 2014 物理学报 54 40504

    Si J F, Huang X L, Zhou L L, Liu H X 2014 Acta Phys. Sin. 54 40504

    [3]

    Wendt H, Abry P, Kiyono K, Hayano J, Watanabe E, Yamamoto Y 2019 IEEE Trans. Biomed. Eng. 66 80Google Scholar

    [4]

    Wang Y, Wei S S, Zhang S, Zhang Y T, Zhao L N, Liu C Y, Murray A 2018 Biomed. Signal Process. Control 42 30Google Scholar

    [5]

    Pernice R, Javorka M, Krohova J, Czippelova B 2019 Med. Biol. Eng. Comput. 57 1247Google Scholar

    [6]

    Deus L A, Sousa C V, Rosa T S, Souto J M 2019 Physiol. Behav. 205 39Google Scholar

    [7]

    Li Y F, Pan W F, Li K Y, Jiang Q, Liu G Z 2019 IEEE J. Biomedical Health Informat. 23 175Google Scholar

    [8]

    刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱 2014 物理学报 19 198703Google Scholar

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 19 198703Google Scholar

    [9]

    Asha N D, Joseph K P 2013 J. Mech. Med. Biol. 13 1350061Google Scholar

    [10]

    Xia J N, Shang P J, Wang J 2013 Nonlinear Dyn. 74 1183Google Scholar

    [11]

    Singh V, Gupta A, Sohal J S, Singh A 2019 Med. Biol. Eng. Comput. 57 741Google Scholar

    [12]

    Alvarez D, Sanchez-Fernandez A, Andres-Blanco A M, Gutierrez-Tobal G C, Vaquerizo-Villar F, Barroso-Garcia V, Hornero R 2019 Entropy 21 381Google Scholar

    [13]

    Li T B, Yao W P, Wu M, Shi Z R, Wang J, Ning X B 2017 Phys. A: Stat. Mech. Appl. 471 492Google Scholar

    [14]

    Manis G, Aktaruzzaman M, Sassi R 2017 IEEE Trans. Biomed. Eng. 64 2711Google Scholar

    [15]

    Acharya U R, Fujita H, Sudarshan V K, Oh S L, Muhammad A, Koh J E W, Tan J H, Chua C K, Chua K P, Tan R S 2016 Neural Comput. Appl. 28 3073

    [16]

    Gao Z, Cai Q, Yang Y, Dang W, Zhang S 2016 Sci. Rep. 6 35622Google Scholar

    [17]

    霍铖宇, 马小飞, 宁新宝 2017 物理学报 66 160502Google Scholar

    Huo C Y, Ma X F, Ning X B 2017 Acta Phys. Sin. 66 160502Google Scholar

    [18]

    Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215

    [19]

    Lin Y C, Lin Y H, Lo M T, Peng C K, Huang N E, Yang C C H, Kuo T B J 2016 Chaos 26 023109Google Scholar

    [20]

    Clifford G D, Tarassenko L 2005 IEEE Trans. Biomed. Eng. 52 630Google Scholar

    [21]

    Colominas M A, Schlotthauer G, Torres M E 2014 Biomed. Signal Process. Control 14 19Google Scholar

    [22]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [23]

    刘晓, 赵海, 张君, 王进法 2016 东北大学学报(自然科学版) 37 486Google Scholar

    Liu X, Zhao H, Zhang J, Wang J F 2016 Journal of Northeastern University (Natural Science) 37 486Google Scholar

    [24]

    Narin A, Isler Y, Ozer M, Perc M 2018 Physica A 509 65

  • [1] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [2] Ma Jin-Long, Zhang Jun-Feng, Zhang Dong-Wen, Zhang Hong-Bin. Quantifying complex network traffic capacity based on communicability sequence entropy. Acta Physica Sinica, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [3] Chen Dan, Shi Dan-Dan, Pan Gui-Jun. Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Physica Sinica, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [4] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] Zhou Jian, Jia Zhen, Li Ke-Zan. Improved algorithm of spectral coarse graining method of complex network. Acta Physica Sinica, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [6] Huo Cheng-Yu, Ma Xiao-Fei, Ning Xin-Bao. Research of short-term heart rate variability during sleep based on limited penetrable horizontal visibility graph. Acta Physica Sinica, 2017, 66(16): 160502. doi: 10.7498/aps.66.160502
    [7] Li Yong-Jun, Yin Chao, Yu Hui, Liu Zun. Link prediction in microblog retweet network based on maximum entropy model. Acta Physica Sinica, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [8] Dong Ze-Qin, Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Li Jin, Wang Jun. An improved synchronous algorithm based on Kendall for analyzing epileptic brain network. Acta Physica Sinica, 2014, 63(20): 208705. doi: 10.7498/aps.63.208705
    [9] Zeng Chao, Jiang Qi-Yun, Chen Chao-Yang, Xu Min. Application of heart rate variability analysis to pain detection for newborns. Acta Physica Sinica, 2014, 63(20): 208704. doi: 10.7498/aps.63.208704
    [10] Si Jun-Feng, Huang Xiao-Lin, Zhou Ling-Ling, Liu Hong-Xing. Conditional fluctuation characteristics of heart rate variability. Acta Physica Sinica, 2014, 63(4): 040504. doi: 10.7498/aps.63.040504
    [11] Zhang Li, Yang Xiao-Li, Sun Zhong-Kui. Generalized projective lag synchronization between delay-coupled networks under circumstance noise. Acta Physica Sinica, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [12] Wang Jian-An. Adaptive generalized synchronization between two different complex networks with time-varying delay coupling. Acta Physica Sinica, 2012, 61(2): 020509. doi: 10.7498/aps.61.020509
    [13] Huo Cheng-Yu, Zhuang Jian-Jun, Huang Xiao-Lin, Hou Feng-Zhen, Ning Xin-Bao. Heart rate variability analysis based on modified Poincaré plot. Acta Physica Sinica, 2012, 61(19): 190506. doi: 10.7498/aps.61.190506
    [14] Li Jin, Liu Da-Zhao. Changes of entropy and power spectrum in circadian rhythm for heart rate variability signals. Acta Physica Sinica, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [15] Song Ai-Ling, Huang Xiao-Lin, Si Jun-Feng, Ning Xin-Bao. Optimum parameters setting in symbolic dynamics of heart rate variability analysis. Acta Physica Sinica, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [16] Yan Bi-Ge, Zhao Ting-Ting. Multiscale base-scale entropy analysis of heart rate variability signal. Acta Physica Sinica, 2011, 60(7): 078701. doi: 10.7498/aps.60.078701
    [17] Zeng Chang-Yan, Sun Mei, Tian Li-Xin. Adaptive-impulsive control for projective synchronization in the drive-response complex network with time-varying coupling. Acta Physica Sinica, 2010, 59(8): 5288-5292. doi: 10.7498/aps.59.5288
    [18] Li Cheng, Tang Da-Kan, Fang Yong, Sun Jin-Tao, Ding Guang-Hong, Poon Chi-Sang, Wu Guo-Qiang. Nonlinear nature of spectral components in heart rate variability. Acta Physica Sinica, 2009, 58(2): 1348-1352. doi: 10.7498/aps.58.1348
    [19] Huang Xiao-Lin, Cui Sheng-Zhong, Ning Xin-Bao, Bian Chun-Hua. Multiscale base-scale entropy analysis of heart rate variability. Acta Physica Sinica, 2009, 58(12): 8160-8165. doi: 10.7498/aps.58.8160
    [20] Ouyang Min, Fei Qi, Yu Ming-Hui. Estimation and improvement of disaster spreading models based on complex network. Acta Physica Sinica, 2008, 57(11): 6763-6770. doi: 10.7498/aps.57.6763
Metrics
  • Abstract views:  11919
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2019
  • Accepted Date:  13 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回