Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study on stretching and breaking process of single-molecule junction: Terminal group effect

Sun Feng Liu Ran Suo Yu-Qing Niu Le-Le Fu Huan-Yan Ji Wen-Fang Li Zong-Liang

Citation:

First principle study on stretching and breaking process of single-molecule junction: Terminal group effect

Sun Feng, Liu Ran, Suo Yu-Qing, Niu Le-Le, Fu Huan-Yan, Ji Wen-Fang, Li Zong-Liang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The stretching and breaking processes of stilbene-based molecular junctions, which contain S or N atoms in the terminal groups, are studied by using density functional theory. The numerical results show that for pyramid-shaped gold electrodes, a stretching force of about 0.59 nN is needed to break the molecular junction with —S terminals, which is larger than the force of 0.25 nN that is required by the molecule to stretch —SH terminals away from pyramid-shaped gold electrode. However, it is obviously smaller than the force of about 1.5 nN that is needed by the molecule to break —S terminals from planar-shaped gold electrode. If the terminal group is —NH2 or —NO2, the force for breaking the molecular junction is about 0.45 nN or 0.33 nN, respectively. More delocalized molecular orbitals formed by the coupling between the frontier occupied orbitals of molecule and electrodes, higher stretching force for breaking molecular junction is required. The natural bond orbital (NBO) analysis shows that more NBO net charges that the terminal atom possesses can enhance the stability of the molecule-electrode contact if there is no bonding orbital formed between end group of molecule and electrode. Based on the numerical results and the combination with previous studies, it can be found that —S terminal and —NH2 terminal show evident properties in distinguishing tip structures of gold electrodes, which provides useful information for precisely controlling the interactions and interface structures between molecule and electrodes.
      Corresponding author: Ji Wen-Fang, wenfangji@sdnu.edu.cn ; Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037)
    [1]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409Google Scholar

    [3]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302Google Scholar

    [4]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023Google Scholar

    [8]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [9]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [10]

    Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417Google Scholar

    [11]

    Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415Google Scholar

    [12]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [13]

    Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485Google Scholar

    [14]

    Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368Google Scholar

    [15]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [16]

    Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198Google Scholar

    [17]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [18]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [19]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [20]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [21]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [22]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [23]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [24]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [25]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [26]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [27]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [28]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [29]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [30]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [31]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [32]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [33]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [34]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607Google Scholar

    [35]

    Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302Google Scholar

    [36]

    Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63Google Scholar

    [37]

    Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1

    [38]

    Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640Google Scholar

    [39]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [40]

    Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7Google Scholar

    [41]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [42]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [43]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [44]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [45]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [46]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [47]

    Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [48]

    Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [49]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [50]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [51]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [52]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [53]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [54]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [55]

    樊帅伟, 王日高 2018 物理学报 67 213101Google Scholar

    Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101Google Scholar

    [56]

    Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233Google Scholar

    [57]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [58]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [59]

    Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491Google Scholar

    [60]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449Google Scholar

    [61]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [62]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • 图 1  M-S, M-SH, M-NH2和M-NO2分子结体系的界面构型

    Figure 1.  Interface configurations for M-S, M-SH, M-NH2 and M-NO2 molecular junctions.

    图 2  M-S, M-SH, M-NH2和M-NO2分子结体系的能量及作用力随电极距离的变化曲线

    Figure 2.  Energy and force curves as functions of electrode distances for M-S, M-SH, M-NH2 and M-NO2 molecular junctions

    图 3  M-S, M-SH和M-NH2分子结体系的拉伸过程及分子相对于电极的旋转演化过程

    Figure 3.  Stretching processes for M-S, M-SH and M-NH2 molecular junctions and rotation-evolution processes of the molecules relative to the electrodes of the molecular junctions.

    图 4  M-S, M-SH, M-NH2和M-NO2分子结体系在能量最低点以及体系断裂前后的轨道空间分布图

    Figure 4.  Spatial distributions of molecular orbitals for M-S, M-SH, M-NH2 and M-NO2 molecular junctions at the lowest ground-state energy points, before and after the breaks of the systems.

    表 1  M-S, M-SH, M-NH2和M-NO2体系分子与电极间的结合能、末端原子与电极间的成键轨道数、末端原子的孤对电子数以及末端原子的NBO净电荷数

    Table 1.  Binding energies between the molecules and the electrodes, the numbers of bonding orbitals between the terminal atoms and the electrodes, the numbers of lone electrons on the terminal atoms and the NBO net charges on the terminal atoms for M-S, M-SH, M-NH2 and M-NO2 molecular junctions.

    体系 M-S M-SH M-NH2 M-NO2
    结合能E/eV 0.505 0.229 0.277 0.186
    成键轨道数 1 0 0 0
    孤对电子数 2 2 1 3
    NBO净电荷 S (–0.056) S (0.020) N (–0.910) O (–0.412)
    DownLoad: CSV
  • [1]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045409Google Scholar

    [3]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302Google Scholar

    [4]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y S, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Applied 9 054023Google Scholar

    [8]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [9]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [10]

    Kang L S, Zhang Y H, Xu X L, Tang X 2017 Phys. Rev. B 96 235417Google Scholar

    [11]

    Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2018 Phys. Rev. B 98 235415Google Scholar

    [12]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 物理学报 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [13]

    Ji W F, Li Z L, Shen L, Kong D X, Zhang H Y 2007 J. Phys. Chem. B 111 485Google Scholar

    [14]

    Chen L J, Feng A, Wang M N, Liu J Y, Hong W J, Guo X F, Xiang D 2018 Sci. China Chem. 61 1368Google Scholar

    [15]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [16]

    Xie F, Fan Z Q, Chen K Q, Zhang X J, Long M Q 2017 Org. Electron. 50 198Google Scholar

    [17]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [18]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [19]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [20]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [21]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [22]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [23]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [24]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [25]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [26]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [27]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [28]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [29]

    Guo C L, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [30]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [31]

    崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋 2018 物理学报 67 118501Google Scholar

    Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501Google Scholar

    [32]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [33]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [34]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607Google Scholar

    [35]

    Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K, Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302Google Scholar

    [36]

    Wang M, Li X T, Li Y, Zuo X, Li D M, Cui B, Liu D S 2018 Org. Electron. 58 63Google Scholar

    [37]

    Zhao W K, Zou D Q, Sun Z P, Xu Y Q, Yu Y J, Yang C L 2018 Chem. Electro. Chem. 5 1

    [38]

    Zuo X, Han L, Li H M, Li X T, Zhao J F, Cui B, Liu D S 2019 Phys. Lett. A 383 640Google Scholar

    [39]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [40]

    Wang Z Q, Li Y F, Niu X, Wei M Z, Dong M M, Hu G C, Li Z L, Wang D Y, Wang C K, Zhang G P 2019 Org. Electron. 64 7Google Scholar

    [41]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [42]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [43]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [44]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [45]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [46]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [47]

    Wang Q L, Liu R, Xiang D, Sun M Y, Zhao Z K, Sun L, Mei T T, Wu P F, Liu H T, Guo X F, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [48]

    Jiang Z L, Wang H, Wang Y F, Sanvito S F, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [49]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [50]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [51]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [52]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [53]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [54]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [55]

    樊帅伟, 王日高 2018 物理学报 67 213101Google Scholar

    Fan S W, Wang R G 2018 Acta Phys. Sin. 67 213101Google Scholar

    [56]

    Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C, Venkataraman L 2013 Nano Lett. 13 6233Google Scholar

    [57]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [58]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [59]

    Xu B Q, Li X L, Xiao X Y, Sakaguchi H, Tao N J 2005 Nano Lett. 5 1491Google Scholar

    [60]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449Google Scholar

    [61]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [62]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • [1] Xie Zhong-Xiang, Yu Xia, Jia Pin-Zhen, Chen Xue-Kun, Deng Yuan-Xiang, Zhang Yong, Zhou Wu-Xing. Thermoelectric properties of acene molecular junctions. Acta Physica Sinica, 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [2] Li Rui-Hao, Liu Jun-Yang, Hong Wen-Jing. Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Acta Physica Sinica, 2022, 71(6): 067303. doi: 10.7498/aps.71.20211819
    [3] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [4] Suo Yu-Qing, Liu Ran, Sun Feng, Niu Le-Le, Wang Shuang-Shuang, Liu Lin, Li Zong-Liang. Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction. Acta Physica Sinica, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [5] Zhu Xiao-Song, Zhang Qing-Bin, Lan Peng-Fei, Lu Pei-Xiang. Molecular orbital imaging with high spatial and temperal resolutions. Acta Physica Sinica, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [6] He Xin, Bai Qing-Shun, Bai Jin-Xuan. Molecular dynamics study of the tensile mechanical properties of polycrystalline graphene. Acta Physica Sinica, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [7] Li Li-Li, Xia Zhen-Hai, Yang Yan-Qing, Han Ming. Molecular dynamics study on tensile behavior of SiC nanofiber/C/SiC nanocomposites. Acta Physica Sinica, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [8] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [9] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [10] Peng De-Feng, Jiang Wu-Gui, Peng Chuan. Steered molecular dynamics simulation of peeling a carbon nanotube on silicon substrate. Acta Physica Sinica, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [11] Hu Wei, Li Zong-Liang, Ma Yong, Li Ying-De, Wang Chuan-Kui. Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect. Acta Physica Sinica, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [12] Wang Yu, Zhang Lin-Xi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains. Acta Physica Sinica, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [13] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] Xia Cai-Juan, Fang Chang-Feng, Hu Gui-Chao, Li Dong-Mei, Liu De-Sheng, Xie Shi-Jie. Effect of the relative orientation of molecules on the electronic transport property of molecular devices. Acta Physica Sinica, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [15] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [16] Li Ying-De. A theoretical study of electrical properties of molecular junction. Acta Physica Sinica, 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [17] Li Zong-Liang, Wang Chuan-Kui, Luo Yi, Xue Qi-Kun. Effect of the electronic dimensionality of electrodes on the current-voltage characteristics of single molecular devices. Acta Physica Sinica, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [18] Wang Wei, Huang Lan, Zhang Yu, Li Chang-Min, Zhang Hai-Qian, Gu Yu, Shen Hao-Ying, Chen Tang-Sheng, Hao Li-Ping, Peng Li, Zhao Li-Xin. . Acta Physica Sinica, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [19] INTERFACIAL PROPERTIES OF Si/GaP(111) HETEROJUNCT10N GROWN BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1989, 38(8): 1265-1270. doi: 10.7498/aps.38.1265
    [20] LIU FU-SUI, K. L. NGAI. DISPERSIVE DIFFUSION-CONTROLLED MONOMOLECULAR AND BIMOLECULAR PROCESSES. Acta Physica Sinica, 1982, 31(6): 764-771. doi: 10.7498/aps.31.764
Metrics
  • Abstract views:  9062
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2019
  • Accepted Date:  11 July 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回