-
Ultrasonic backscatter has been gradually applied to the assessment and diagnosis of bone disease. The heavy frequency-dependent attenuation of ultrasound results in weak ultrasonic signals with poor signal-to-noise ratio and serious wave distortions during propagation in cancellous bone. Ultrasonic attenuation measured with the through-transmission method is an averaged result of ultrasonically interrogated tissues (including the soft tissue, cortical bone and cancellous bone). Therefore, the through-transmission measurements can not accurately provide ultrasonic attenuation of cancellous bone of interest. The purpose of this study is to estimate ultrasonic frequency-dependent attenuation with ultrasonic backscatter measurements and to compensate for the frequency-dependent attenuation in an ultrasonic backscatter signal from cancellous bone. In-vitro ultrasonic backscatter and through-transmission measurements are performed on 16 cancellous bone specimens by using 1.0-MHz transducers. Spatial scans are performed in a 10 mm × 10 mm scanned region with a spatial interval of 0.5 mm for each bone specimen. The frequency slope of ultrasonic attenuation is measured with the ultrasonic through-transmission signals serving as a standard value. Four different algorithms (the spectral shift method, the spectral difference method, the spectral log difference method, and the hybrid method) are used to estimate the frequency slope of ultrasonic attenuation coefficient from ultrasonic backscatter signal. The results show that the frequency-dependent attenuation coefficient ranges from 2.3 dB/mm/MHz to 6.2 dB/mm/MHz for the bovine bone specimens. The through-transmission measured frequency slope of ultrasonic attenuation coefficient is (4.14 ± 1.14) dB/mm/MHz (mean ± standard deviation), and frequency slopes of ultrasonic attenuation coefficient are estimated by four backscattering methods to be (3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, and (4.05 ± 0.85) dB/mm/MHz, respectively. The estimated frequency-dependent attenuation is significantly correlated with the standard attenuation value (R = 0.78-0.92, p < 0.01), in which the spectral difference method (R = 0.91, p < 0.01) and the hybrid method (R = 0.92, p < 0.01) are more accurate with an estimated error less than 20%. The results prove that it is feasible to measure the frequency-dependent attenuation from ultrasonic backscatter signal of cancellous bone. Based on Fourier transform-inverse Fourier transform, the frequency-dependent attenuation can be compensated.The compensated ultrasonic signals are with significantly improved signal intensity and improved signal-to-noise ratio. This study is conducive to the subsequent ultrasonic backscatter measurement and ultrasonic imaging of cancellous bone.
-
Keywords:
- ultrasonic backscatter /
- bone evaluation /
- frequency-dependent attenuation /
- attenuation compensation
[1] 王牧 1997 临床医学影像杂志 8 87
Wang M 1997 J. Chin. Clin. Med. Imaging 8 87
[2] Hqrrar K, Hamami L, Lespessailles E, Jennane R 2013 Biomed. Signal Process. 8 657Google Scholar
[3] 他得安, 王威琪 2013 应用声学 32 199
Ta D A, Wang W Q 2013 Appl. Acoust. 32 199
[4] Liu C C, Ta D A, Wang W Q, Fujita F, Hachiken T, Matsukawa M, Mizuno K 2014 J. Appl. Phys. 115 064906Google Scholar
[5] Zhang R, Ta D A, Liu C C, Chen C 2013 Ultrasound Med. Biol. 39 1751Google Scholar
[6] Liu C C, Tang T, Xu F, Ta D A, Matsukawa M, Hu B, Wang W Q 2015 Ultrasound Med. Biol. 41 2714Google Scholar
[7] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303Google Scholar
Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303Google Scholar
[8] 张正罡, 他得安 2012 物理学报 61 134304Google Scholar
Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304Google Scholar
[9] Xu K L, Liu C C, Ta D A 2013 35th Annual International Conference of the IEEE EMBC Osaka, Japan July 3−7, 1930 p13812291
[10] 张锐 2000 物理学报 49 1297Google Scholar
Zhang R 2000 Acta Phys. Sin. 49 1297Google Scholar
[11] 赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596Google Scholar
Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596Google Scholar
[12] Wear K A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1432Google Scholar
[13] Liu C C, Ta D A, Wang W Q 2014 Chin. J. Acoust. 33 73Google Scholar
[14] Liu C C, Han H J, Ta D A, Wang W Q 2013 Sci. China: Phys. Mech. Astron. 56 1310
[15] Liu C C, Ta D A, Hu B, Li H L, Wang W Q 2014 J. Appl. Phys. 116 124903Google Scholar
[16] Wear K A 2007 J. Acoust. Soc. Am. 121 2431Google Scholar
[17] He P, Greenleaf J F 1986 J. Accoust. Soc. Am. 79 526Google Scholar
[18] Goutam G, Michael L O 2012 J. Acoust. Soc. Am. 132 533Google Scholar
[19] Parker K J, Waag R C 1983 IEEE Trans. Biomed. Eng. BME 30 431
[20] Kim H,Varghese T 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 510Google Scholar
[21] Labyed Y, Bigelow T A 2010 J. Acoust. Soc. Am. 128 3232Google Scholar
[22] Flax S W, Pelc N J, Glover G H, Gutmann F D, McLachlan M 1983 Ultrason. Imag. 5 95Google Scholar
[23] Kuc R 1984 IEEE Trans. Acoust., Speech, Signal Process. 32 1
[24] Insana M, Zagzebski J, Madsen E 1983 Ultrason. Imag. 5 331Google Scholar
[25] Kim H, Varghese T 2008 Ultrasound Med. Biol. 34 1808Google Scholar
[26] Labyed Y, Bigelow T A 2011 J. Acoust. Soc. Am. 129 2316
[27] Langton C M, Palmer S B, Porter R W 1984 Eng. Med. 13 89Google Scholar
[28] Prins S H, Jùrgensen H L, Jùrgensen L V, Hassager C 1998 Clin. Physiol. 18 3
[29] Leeman S, Ferrari L, Jones J P, Fink M 1984 IEEE Trans. Son. Ultrason. 31 352Google Scholar
[30] Liu C C, Dong R, Li B Y, Li Y, Xu F, Ta D A, Wang W Q 2019 Chin. Phys. B 28 024302Google Scholar
-
图 3 频散衰减系数测量值与透射法频散衰减标准值的关系 (a)谱移法; (b)谱差法; (c)谱对数差法; (d)混合法
Figure 3. Relationship between the measured frequency-dependent attenuation and the standard frequency-dependent attenuation: (a) the spectral shift method; (b) the spectral difference method; (c) the spectral log difference method; (d) the hybrid method.
表 1 频散衰减系数测量结果
Table 1. Frequency-dependent attenuation coefficient measurement results.
样本编号 透射标准值/dB·mm–1·MHz–1 背散射法测量值(相对误差)/dB·mm–1·MHz–1 (%) 谱移法 谱差法 谱对数差法 混合法 1 2.30 2.74 (19.1) 2.82 (22.4) 2.77 (20.3) 2.67 (16.2) 2 2.63 2.49 (–5.3) 2.85(8.3) 3.13 (19.3) 2.97 (13.1) 3 2.82 2.39 (–15.3) 2.97 (5.2) 2.78 (–1.4) 3.29 (16.6) 4 3.06 3.04 (–0.6) 2.77 (–9.4) 3.02 (–1.4) 3.02 (–1.3) 5 3.10 2.95 (–4.6) 2.84 (–8.3) 3.39 (9.5) 3.12 (0.8) 6 3.30 2.96 (–10.3) 3.38 (2.3) 2.99 (-9.4) 3.35 (1.7) 7 4.14 2.93 (–29.2) 3.94 (–4.9) 4.21 (1.5) 4.32 (4.3) 8 4.30 3.06 (–28.9) 4.75 (10.5) 3.58 (–16.7) 3.61 (–16.0) 9 4.37 4.80 (9.8) 3.89 (–11.0) 3.66 (–16.2) 4.75 (8.7) 10 4.37 5.10 (–16.9) 4.19 (–4.2) 3.36 (–23.1) 4.25 (–2.7) 11 4.52 3.89 (–13.9) 4.35 (–3.7) 3.87 (–14.3) 4.79 (6.0) 12 4.83 5.35 (10.9) 4.19 (–13.2) 4.53 (–6.1) 4.69 (–2.7) 13 5.29 4.42 (–16.5) 5.68 (7.3) 6.08 (14.9) 5.18 (–2.0) 14 5.50 5.18 (–5.8) 4.38 (–20.0) 4.19 (–23.8) 5.00 (–9.0) 15 5.64 4.73 (–16.2) 5.75 (1.9) 3.96 (–29.9) 5.08 (–9.9) 16 6.19 6.02 (–2.8) 5.25 (–15.3) 4.79 (–22.6) 4.76 (–23.1) 平均值 (标准差) 4.14 (1.14) 3.88 (1.15) 4.00 (0.98) 3.77 (0.84) 4.05 (0.85) -
[1] 王牧 1997 临床医学影像杂志 8 87
Wang M 1997 J. Chin. Clin. Med. Imaging 8 87
[2] Hqrrar K, Hamami L, Lespessailles E, Jennane R 2013 Biomed. Signal Process. 8 657Google Scholar
[3] 他得安, 王威琪 2013 应用声学 32 199
Ta D A, Wang W Q 2013 Appl. Acoust. 32 199
[4] Liu C C, Ta D A, Wang W Q, Fujita F, Hachiken T, Matsukawa M, Mizuno K 2014 J. Appl. Phys. 115 064906Google Scholar
[5] Zhang R, Ta D A, Liu C C, Chen C 2013 Ultrasound Med. Biol. 39 1751Google Scholar
[6] Liu C C, Tang T, Xu F, Ta D A, Matsukawa M, Hu B, Wang W Q 2015 Ultrasound Med. Biol. 41 2714Google Scholar
[7] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303Google Scholar
Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303Google Scholar
[8] 张正罡, 他得安 2012 物理学报 61 134304Google Scholar
Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304Google Scholar
[9] Xu K L, Liu C C, Ta D A 2013 35th Annual International Conference of the IEEE EMBC Osaka, Japan July 3−7, 1930 p13812291
[10] 张锐 2000 物理学报 49 1297Google Scholar
Zhang R 2000 Acta Phys. Sin. 49 1297Google Scholar
[11] 赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596Google Scholar
Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596Google Scholar
[12] Wear K A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1432Google Scholar
[13] Liu C C, Ta D A, Wang W Q 2014 Chin. J. Acoust. 33 73Google Scholar
[14] Liu C C, Han H J, Ta D A, Wang W Q 2013 Sci. China: Phys. Mech. Astron. 56 1310
[15] Liu C C, Ta D A, Hu B, Li H L, Wang W Q 2014 J. Appl. Phys. 116 124903Google Scholar
[16] Wear K A 2007 J. Acoust. Soc. Am. 121 2431Google Scholar
[17] He P, Greenleaf J F 1986 J. Accoust. Soc. Am. 79 526Google Scholar
[18] Goutam G, Michael L O 2012 J. Acoust. Soc. Am. 132 533Google Scholar
[19] Parker K J, Waag R C 1983 IEEE Trans. Biomed. Eng. BME 30 431
[20] Kim H,Varghese T 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 510Google Scholar
[21] Labyed Y, Bigelow T A 2010 J. Acoust. Soc. Am. 128 3232Google Scholar
[22] Flax S W, Pelc N J, Glover G H, Gutmann F D, McLachlan M 1983 Ultrason. Imag. 5 95Google Scholar
[23] Kuc R 1984 IEEE Trans. Acoust., Speech, Signal Process. 32 1
[24] Insana M, Zagzebski J, Madsen E 1983 Ultrason. Imag. 5 331Google Scholar
[25] Kim H, Varghese T 2008 Ultrasound Med. Biol. 34 1808Google Scholar
[26] Labyed Y, Bigelow T A 2011 J. Acoust. Soc. Am. 129 2316
[27] Langton C M, Palmer S B, Porter R W 1984 Eng. Med. 13 89Google Scholar
[28] Prins S H, Jùrgensen H L, Jùrgensen L V, Hassager C 1998 Clin. Physiol. 18 3
[29] Leeman S, Ferrari L, Jones J P, Fink M 1984 IEEE Trans. Son. Ultrason. 31 352Google Scholar
[30] Liu C C, Dong R, Li B Y, Li Y, Xu F, Ta D A, Wang W Q 2019 Chin. Phys. B 28 024302Google Scholar
Catalog
Metrics
- Abstract views: 10165
- PDF Downloads: 109
- Cited By: 0