Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the diffusion dynamics of Al atoms on Si surface

Zhang Heng Huang Yan Shi Wang-Zhou Zhou Xiao-Hao Chen Xiao-Shuang

Citation:

First-principles study on the diffusion dynamics of Al atoms on Si surface

Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang
PDF
HTML
Get Citation
  • Density functional theory is used to calculate the adsorption and diffusion behavior of Al atoms on clean, H-terminate, Cl-terminate Si(100) and Si(111) surfaces. The most stable position of Al atom adsorption and the diffusion path are different on Si(100) surface terminated by different methods. On the surface of clean Si(100), the Tr site is the most stable site for Al atom with an adsorption energy of 4.01 eV, and the H and M sites are the sub-stable stable sites with the adsorption energies of 3.51 eV, and 3.63 eV, respectively. When the Al atom is adsorbed at the Tr site on the clean Si(100) surface, it bonds with the Si atom to destroy the Si—Si bond in the dimer. Therefore Al is easily adsorbed at the Tr site of the trench and diffuses in a zigzag pattern along the trench. On the H-terminate and Cl-terminate Si(100) surface, Si—Si bonds in the dimer column are changed from cross to parallel. Al is easily adsorbed at the H position at the top of the dimer column, and diffuses along the line at the top of the dimer. The differential charge density shows that the Al atom transfers electrons to the Si atoms on the surface, and the surface H-terminate and Cl-terminate weaken the interaction between Al atoms and Si, and reduces the diffusion energy barrier of Al atoms. The Si(111) surface terminated by different methods has the same stable position (T4 site) for the adsorption of Al atoms. When Al atom adsorbs at the T4 site on the clean Si(100) surface, it bonds to Si atom, which located at the three T1 site, then Al atom is firmly fixed by the three Al—Si bonds with a bond length of 2.55 Å. Thus Al atom can has the largest adsorption energy and form the most stable state at the T1 site. With the diffusion and migration of Al atom, the bond between Al atom and the T1 site in the opposite direction appears to be broken. When Al atom migrating to the saddle point position is the most unstable. Here Al atom bonds to the Si atoms of the two adjacent T1 sites to form a bond with a length of 2.49 Å, which is 0.06 Å shorter than the initial Al—Si bond (2.55 Å). What’s more, the diffusion energy barrier of Al atom at this position is 0.65 eV, which impede Al atom to diffuse and migrate. When Al atom migrates to the H site, it rebonds to the three Si atoms on the adjacent surface and forms a bond with a length of 2.52 Å, which is 0.03 Å shorter than the Al—Si bond (2.55 Å) at the initial position. On the H-terminate and Cl-terminate Si(111) surface, Al atom doesn’t bond with Si atom for the H or Cl saturates the dangling bonds on the Si surface. The Si(111) surface terminated by different methods has the same stable position for adsorption of Al atoms. The diffusion paths of Al atoms are similar, and they are easy to be adsorbed to the top position (T4 site) of the second Si atom, and the path along T4 to H3 is diffused. Similarly, the H-terminate or Cl-terminate of Si(111) surface weakens the electron transfer between Al and Si atoms and reduces the diffusion energy barrier of Al atoms. Regardless of the Si(100) or Si(111) surface, the H-terminate and Cl-terminate Si surfaces are effective in reducing the diffusion barrier of Al atoms.
      Corresponding author: Zhou Xiao-Hao, xhzhou@mail.sitp.ac.cn
    • Funds: Project supported by National Key Research and Development Project of China (Grant No. 2016YFB0400102)
    [1]

    Bak S J, Mun D H, Jung K C, et al. 2013 Electron. Mater. Lett. 9 367Google Scholar

    [2]

    Semond F 2015 MRS Bull. 40 412Google Scholar

    [3]

    Liu X Y, Li H F, Uddin A, et al. 2007 J. Cryst. Growth 300 114Google Scholar

    [4]

    Cheng K, Leys M, Degroote S, et al. 2006 J. Electron. Mater. 35 592Google Scholar

    [5]

    Yuan Y, Zuo R, Mao K, et al. 2018 Appl. Surf. Sci. 436 50Google Scholar

    [6]

    Cordier Y, Comyn R, Frayssinet E, et al. 2018 Phys. Status Solidi A 215 1700637Google Scholar

    [7]

    Zhao D, Zhao D 2018 J. Semicond. 39 033006Google Scholar

    [8]

    Wang X, Li H, Wang J, et al. 2014 Electron. Mater. Lett. 10 1069Google Scholar

    [9]

    Liu B T, Ma P, Li X L, et al. 2017 Chin. Phys. Lett. 34 058101Google Scholar

    [10]

    Novák T, Kostelník P, Konečný M, et al. 2019 Jpn. J. Appl. Phys. 5 SC1018

    [11]

    Lee S J, Jeon S R, Ju J W, et al. 2019 J. Nanosci. Nanotech. 19 892Google Scholar

    [12]

    Cao M S, Shu J C, Wang X X, et al. 2019 Ann. Phys. 531 1800390Google Scholar

    [13]

    Cao M S, Wang X X, Zhang M, et al. 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [14]

    Zhang M, Wang X X, Cao W Q, et al. 2019 Adv. Opt. Mater. 1900689Google Scholar

    [15]

    Albao M A, Hsu C H, Putungan D B, et al. 2010 Surf. Sci. 604 396Google Scholar

    [16]

    Luniakov Y V 2011 Surf. Sci. 605 1866Google Scholar

    [17]

    Matsuo Y, Kangawa Y, Togashi R, et al. 2007 J. Cryst. Growth 300 66Google Scholar

    [18]

    Kresse G 1993 Phys. Rev. B 47 558Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [20]

    Stadler R, Podloucky R, Kresse G, et al. 1998 Phys. Rev. B 57 4088Google Scholar

    [21]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [22]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106Google Scholar

    [23]

    Sheppard D, Henkelman G 2011 J. Comput. Chem. 32 1769Google Scholar

    [24]

    Ly D Q, Paramonov L, Makatsoris C 2009 J. Phys.: Condens. Matter. 21 185006Google Scholar

    [25]

    Kepenekian M, Robles R, Rurali R, et al. 2014 Nanotechnology 25 465703Google Scholar

    [26]

    Hsieh M F, Lin D S, Tsay S F 2009 Phys. Rev. B 80 045304Google Scholar

  • 图 1  Si(100)表面的几何结构, 其中深蓝色和红色用于标记Si-Si二聚体中高和低两种位置的Si原子 (a)俯视图; (b)侧视图

    Figure 1.  The geometry of the Si(100) surface, in which dark blue and red are used to mark the Si atoms in the high and low positions in the Si-Si dimer: (a) Top view; (b) side view.

    图 2  Al原子吸附在清洁Si(100) Tr位点、H钝化Si(100) H位点和Cl钝化Si(100) 表面H位点 (a)俯视图; (b)侧视图; (c)差分电荷密度图

    Figure 2.  Al atom adsorption on the clean Si (100) Tr site, H-terminate Si (100) H site and Cl-terminate Si (100) surface H site: (a) Top view; (b) side view; (c) differential charge image.

    图 3  Al原子吸附在(a)清洁、(b)氢化、(c)氯化Si(100)表面后差分电荷图和Bader电子转移情况

    Figure 3.  Bader charge transfer for Al atom adsorption on (a) the clean Si (100) Tr site, (b) H-terminate Si (100) H site and (c) Cl-terminate Si (100) surface H site.

    图 4  Al原子在清洁、H钝化、Cl钝化Si(100)表面 (a)扩散路径和; (b)扩散能垒

    Figure 4.  Al atoms on clean, H-terminate and Cl-terminate Si(100) surfaces: (a) Diffusion paths; (b) diffusion barriers.

    图 5  (a)和(b)分别为清洁Si(111)表面俯视图和侧视图T1, B2, H3T4为Al原子在Si(111)表面的吸附的四个高对称位

    Figure 5.  (a) and (b) are the top and side views of the clean Si (111) surface, respectively; T1, B2, H3 and T4 are the four highly symmetric sites of adsorption of Al atoms on the Si(111) surface.

    图 6  Al原子吸附在清洁、H钝化、Cl钝化Si(111)表面的(a)俯视图, (b)侧视图, (c)差分电荷密度图

    Figure 6.  Al atom adsorbed on clean, H-terminate, Cl-terminate Si(111) surface: (a) Top view; (b) side view; (c) differential charge image

    图 7  Al原子在清洁、H钝化、Cl钝化Si(111)表面 (a)扩散路径; (b)扩散能垒

    Figure 7.  Al atoms on clean, H-terminate, and Cl-terminate Si(111) surfaces: (a) Diffusion paths; (b) diffusion barriers.

    表 1  Al原子吸附在清洁、H钝化和Cl钝化Si(100)表面的吸附能Ead(eV)和结构参数; 其中Si—Si为二聚体Si—Si的键长, Si—Aladjacent为Al原子与邻近Si原子之间的距离

    Table 1.  Adsorption energy Ead (eV) and structural parameters of Al atom adsorbed on clean, H-terminate and Cl-terminate Si(100) surface; Si—Si is the bond length of dimer Si—Si, Si—Aladjacent is the distance between the Al atom and the adjacent Si atom.

    Si(100) surfaceSiteEads/eVSi—Si/ÅSi—Aladjacent
    BareTr4.012.772.45
    M3.962.432.52
    H3.632.452.45
    H-terminateTr1.542.412.69
    T1.502.402.69
    H1.372.402.98
    Cl-terminateT2.032.422.87
    M1.172.401.17
    B2.042.424.09
    H1.802.392.83
    DownLoad: CSV

    表 3  Al原子吸附在清洁、H钝化、Cl钝化Si(100)和Si(111)表面的扩散路径和扩散能垒

    Table 3.  Diffusion path and diffusion energy of Al atom adsorbed on clean, H-terminate, Cl-terminate Si(100) and Si(111) surfaces.

    Type Si(100) Si(111)
    Bare H-terminate Cl-terminate Bare H-terminate Cl-terminate
    Path Tr M H → $H'$ H → $H'$ T4 H3 T4 H3 T4 H3
    Eads/eV 0.60 0.38 0.13 0.65 0.05 0.14
    DownLoad: CSV

    表 2  Al原子吸附在清洁、H钝化、Cl钝化Si(111)的几何位点, 其中Eads为对应位点的吸附能, d1, d2, d3为Al原子与邻近三个Si原子之间的距离, h为竖直方向Al原子与邻近Si原子之间的距离

    Table 2.  Al atom adsorption in the clean, H-terminate, Cl-terminate Si (111) geometric site, where Eads is the adsorption energy of the adjacent site; d1, d2 and d3 are the distance between the Al atom and the adjacent three Si atoms, h is the distance between the Al atom and the adjacent Si atom in the vertical direction.

    Si(111) surfaceSiteEads/eVd1d2d3h
    BareT44.512.552.552.552.57
    H34.352.522.522.525.37
    H-terminateT41.363.093.063.052.71
    H31.132.932.952.925.76
    Cl-terminateT42.034.274.284.264.38
    H31.994.084.144.187.35
    DownLoad: CSV
  • [1]

    Bak S J, Mun D H, Jung K C, et al. 2013 Electron. Mater. Lett. 9 367Google Scholar

    [2]

    Semond F 2015 MRS Bull. 40 412Google Scholar

    [3]

    Liu X Y, Li H F, Uddin A, et al. 2007 J. Cryst. Growth 300 114Google Scholar

    [4]

    Cheng K, Leys M, Degroote S, et al. 2006 J. Electron. Mater. 35 592Google Scholar

    [5]

    Yuan Y, Zuo R, Mao K, et al. 2018 Appl. Surf. Sci. 436 50Google Scholar

    [6]

    Cordier Y, Comyn R, Frayssinet E, et al. 2018 Phys. Status Solidi A 215 1700637Google Scholar

    [7]

    Zhao D, Zhao D 2018 J. Semicond. 39 033006Google Scholar

    [8]

    Wang X, Li H, Wang J, et al. 2014 Electron. Mater. Lett. 10 1069Google Scholar

    [9]

    Liu B T, Ma P, Li X L, et al. 2017 Chin. Phys. Lett. 34 058101Google Scholar

    [10]

    Novák T, Kostelník P, Konečný M, et al. 2019 Jpn. J. Appl. Phys. 5 SC1018

    [11]

    Lee S J, Jeon S R, Ju J W, et al. 2019 J. Nanosci. Nanotech. 19 892Google Scholar

    [12]

    Cao M S, Shu J C, Wang X X, et al. 2019 Ann. Phys. 531 1800390Google Scholar

    [13]

    Cao M S, Wang X X, Zhang M, et al. 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [14]

    Zhang M, Wang X X, Cao W Q, et al. 2019 Adv. Opt. Mater. 1900689Google Scholar

    [15]

    Albao M A, Hsu C H, Putungan D B, et al. 2010 Surf. Sci. 604 396Google Scholar

    [16]

    Luniakov Y V 2011 Surf. Sci. 605 1866Google Scholar

    [17]

    Matsuo Y, Kangawa Y, Togashi R, et al. 2007 J. Cryst. Growth 300 66Google Scholar

    [18]

    Kresse G 1993 Phys. Rev. B 47 558Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [20]

    Stadler R, Podloucky R, Kresse G, et al. 1998 Phys. Rev. B 57 4088Google Scholar

    [21]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [22]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106Google Scholar

    [23]

    Sheppard D, Henkelman G 2011 J. Comput. Chem. 32 1769Google Scholar

    [24]

    Ly D Q, Paramonov L, Makatsoris C 2009 J. Phys.: Condens. Matter. 21 185006Google Scholar

    [25]

    Kepenekian M, Robles R, Rurali R, et al. 2014 Nanotechnology 25 465703Google Scholar

    [26]

    Hsieh M F, Lin D S, Tsay S F 2009 Phys. Rev. B 80 045304Google Scholar

  • [1] Li Xiao-Lin, Yuan Kun, He Jia-Le, Liu Hong-Feng, Zhang Jian-Bo, Zhou Yang. First principle study of adsorption and desorption behaviors of NH3 molecule on the TaC (0001) surface. Acta Physica Sinica, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] Adsorption and Desorption Behaviors of the NH3 Molecule on the TaC (0001) surface: A First-Principles Study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210400
    [3] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [4] He Yan-Bin, Jia Jian-Feng, Wu Hai-Shun. First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface. Acta Physica Sinica, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [5] Lü Bing, Linghu Rong-Feng, Song Xiao-Shu, Li Ying-Fa, Yang Xiang-Dong. The vibration and dissociation of NO onPt (111) surface. Acta Physica Sinica, 2012, 61(22): 226801. doi: 10.7498/aps.61.226801
    [6] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [7] Wang Ru-Zhi, Xu Li-Chun, Yan Hui, Kohyama Masanori. First-principles predictions for the tensile strength of Al metal with dislocations of twist grain boundaries. Acta Physica Sinica, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [8] Lv Bing, Linghu Rong-Feng, Song Xiao-Shu, Wang Xiao-Lu, Yang Xiang-Dong, He Duan-Wei. Adsorption and diffusion of oxygen on Pt (111) surface and subsurface. Acta Physica Sinica, 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [9] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [10] Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan. Simulation of surface segregation of in to Al(001) surface. Acta Physica Sinica, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [11] Zhang Jian-Jun, Zhang Hong. A low coverage investigation on Al adsorption on the (111) surface of Pt, Ir and Au. Acta Physica Sinica, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [12] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [13] Yang Chun, Feng Yu Fang, Yu Yi. Dynamics study of the adsorption and diffusion in early growth stage of AlN/α-Al2O3(0001) films. Acta Physica Sinica, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [14] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [15] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [16] Chen Guo-Dong, Wang Liu-Ding, Zhang Jiao-Qiang, Cao De-Cai, An Bo, Ding Fu-Cai, Liang Jin-Kui. First-principles study of electron field emission from the carbon nanotube with B doping and H2O adsorption. Acta Physica Sinica, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [17] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [19] Yang Chun, Li Yan-Rong, Yan Qi-Li, Liu Yong-Hua. Effects of atomic defects of α-Al2O3(0001) on ZnO adsorption. Acta Physica Sinica, 2005, 54(5): 2364-2368. doi: 10.7498/aps.54.2364
    [20] Yuan Xian-Zhang, Miao Zhong-Lin. In-situ photo-modulated reflectance study on the interface of Al and GaAs surface quantum well. Acta Physica Sinica, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
Metrics
  • Abstract views:  12498
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2019
  • Accepted Date:  23 August 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回