Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional phase sensitive detector and its application to demodulating amplitude modulated image

Liu Yi Hao Si-Zhong Tian Yu-Lin Liu Guo-Zhong

Citation:

Two-dimensional phase sensitive detector and its application to demodulating amplitude modulated image

Liu Yi, Hao Si-Zhong, Tian Yu-Lin, Liu Guo-Zhong
PDF
HTML
Get Citation
  • Two-dimensional spatial modulation and demodulation technology can improve the weak signal detection capability of photoelectric detection system in a stronger noise background. In this paper, a two-dimensional phase-sensitive detector for the high-precision demodulation of 2D spatial amplitude-modulated signal is proposed. In this paper, we introduce the principle of extracting modulating signals from 2D amplitude modulated images by using 2D phase-sensitive detector, and simulate its ability to suppressing noise and extracting signal from the amplitude-modulated images buried in noise. In order to eliminate the influence of grid image generated by metal wire mesh sandwiched between two layers of glass on the detection of shielding glass defects, the methods of filtering in the frequency domain, rectifying plus filtering and two-dimensional phase sensitive detector are used to demodulate the mesh amplitude-modulated image, and the effects of extracting defects and suppressing noise are compared with each other. The principle and experimental results of defect detection of ordinary glass by using external carrier are also provided. The simulation results and the detection results show that the two-dimensional phase-sensitive detector can be used to demodulate spatial two-dimensional amplitude-modulated image produced by optical modulators to extract two-dimensional measurement signals. The 2D phase-sensitive detector can greatly improve the signal-to-noise ratio of the output image, increase detection accuracy and the ability to extract modulating signals from the amplitude-modulated image buried in noise.
      Corresponding author: Liu Guo-Zhong, liuguozhong@bistu.edu.cn
    • Funds: Project supported by Beijing Natural Science Foundation (Grant No. 7172035)
    [1]

    牟畅, 王彩霞, 段可, 刘鹏 2018 长春理工大学学报(自然科学版) 41 86Google Scholar

    Mu C, Wang C X, Duan K, Liu P 2018 J. Changchun Univ. Sci. Technol. Natural Science Edition 41 86Google Scholar

    [2]

    武博宇 2018 硕士学位论文(长春: 长春理工大学)

    Wu B Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [3]

    官庆 2016 光学与光电技术 14 87

    Guan Q 2016 Opt. Optoelectr. Technol. 14 87

    [4]

    邹昀哲 2016 科技经济导刊 02 85

    Zou Y Z 2016 Technol. Economic Guide 02 85

    [5]

    王建立 2015 飞行器测控学报 34 489

    Wang J L 2015 J. Spacecraft TT&C Technol. 34 489

    [6]

    丁珏, 黄传伟, 陈珣, 李斯伟, 梁晓会 2014 光学与光电技术 12 35

    Ding Y, Huang C W, Chen X, Li S W, Liang X H 2014 Opt. Optoelectr. Technol. 12 35

    [7]

    叶松, 严浩方, 孙晓兵, 汪杰君, 王新强, 王方原, 李树, 甘永莹, 张文涛 2019 光学学报 39 74

    Ye S, Yan H W, Sun X B, Wang J J, Wang X Q, Wang F Y, Li S, Gan Y Y, Zhang W T 2019 Acta Opt. Sin. 39 74

    [8]

    杨鲁新, 董文博 2018 载人航天 24 55Google Scholar

    Yang L X, Dong W B 2018 Manned Spaceflight 24 55Google Scholar

    [9]

    郝勤正, 杨玲, 甄小琼, 刘汉明 2018 激光与光电子学进展 55 125

    Hao Q Z, Yang L, Zhen X Q, Liu H M 2018 Laser & Optoelectronics Progress 55 125

    [10]

    Thomsen C, Grahn H T, Maris H J 1986 Phys. Rev. B 34 4129Google Scholar

    [11]

    Stewart C E, Hooper I R, Sambles J R 2008 J. Phys. D: Appl. Phys. 41 105408

    [12]

    Johnston N S 2009 Ph. D. Dissertation (Nottingham: University of Nottingham

    [13]

    刘灏, 宋岩峰, 张西京, 孙卫平, 李杰 2016 激光与红外 46 1441Google Scholar

    Liu H, Song Y F, Zhang X J, Sun W P, Li J 2016 Laser & Infrared 46 1441Google Scholar

    [14]

    Johnston N S, Light R, Zhang J, Somekh M, Pitter M 2011 Proc. SPIE 73 807303

    [15]

    Hornbeck L J 1990 Proc. SPIE Spatial Light Modulators and Applications 1150 86

    [16]

    Jia Y Q, Feng Q, Zhang B, Wang W, Lin C Y, Ding Y C 2018 Chin. Phys. Lett. 35 48

    [17]

    冯维, 张福民, 王惟婧, 曲兴华 2017 物理学报 66 234201Google Scholar

    Feng W, Zhang F M, Wang W J, Qu X H 2017 Acta Phys. Sin. 66 234201Google Scholar

    [18]

    李威威 2018 硕士学位论文(西安: 西安电子科技大学)

    Li W W 2018 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [19]

    马翠 2018 博士学位论文(深圳: 中国科学院大学(中国科学院深圳先进技术研究院)

    Ma C 2018 Ph. D. Dissertation (Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) (in Chinese)

    [20]

    王惟婧 2017 硕士学位论文(天津: 天津大学)

    Wang W J 2017 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [21]

    王淑仙 2008 博士学位论文(上海: 华东师范大学)

    Wang S X 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [22]

    吴创奇 2016 硕士学位论文(南京: 南京理工大学)

    Wu C Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    吉莉 2015 硕士学位论文(南京: 南京理工大学)

    Ji L 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)

  • 图 1  二维相敏检波器组成

    Figure 1.  Block diagram of 2D PSD.

    图 2  二维空间调制及二维相敏检波过程 (a) 二维调制信号空域图像; (b) 二维调制信号频域2D图像; (c) 二维调制信号频域3D网格图像; (d) 二维载波信号空域图像; (e) 二维载波信号频域2D图像; (f) 二维载波信号频域3D网格显示; (g) 二维调幅信号空域图像; (h) 二维调幅信号频域2D图像; (i) 二维调幅信号频域3D网格图像; (j) 乘法器输出信号空域图像; (k) 乘法器输出信号频域2D图像; (l) 乘法器输出信号频域3D网格图像; (m) 相敏检波器输出信号空域图像; (n) 相敏检波器输出信号频域2D图像; (o) 相敏检波器输出信号频域3D网格图像

    Figure 2.  Simulation of 2D spatial modulation and 2D PSD: (a) Spatial image of 2-D modulating signal; (b) frequency domain image of 2D modulating signal; (c) frequency domain 3D mesh image of 2D modulating signal; (d) spatial image of 2D carrier signal; (e) frequency domain image of 2D carrier signal; (f) frequency domain 3D mesh image of 2D carrier signal; (g) spatial image of 2D modulated signal; (h) frequency domain image of 2D modulated signal; (i) frequency domain 3D mesh image of 2D modulated signal; (j) output spatial image of multiplier; (k) output frequency domain image of multiplier; (l) output frequency domain 3D mesh image of multiplier; (m) output spatial image of 2D PSD; (n) output frequency domain image of 2D PSD; (o) output frequency domain 3D mesh image of 2D PSD.

    图 3  两种不同检波器检波方法及噪声抑制特性仿真流程 (a) 整流滤波方法; (b) 二维相敏检波方法

    Figure 3.  Simulation flow of demodulation and noise suppression of two different demodulation methods: (a) Rectifier + filtering method; (b) 2D PSD.

    图 4  二维调幅信号在加入不同噪声情况下两种检波方法噪声抑制特性 (a) 信噪比60 dB调幅信号; (b) 输入60 dB, 二维相敏检波输出空域2D图像; (c) 输入60 dB, 二维相敏检波输出空域3D网格图像; (d) 输入60 dB, 整流 + 滤波方法输出空域2D图像; (e) 输入60 dB, 整流 + 滤波方法输出空域3D网格图像; (f) 信噪比0 dB调幅信号; (g) 输入0 dB, 二维相敏检波输出空域2D图像; (h) 输入0 dB, 二维相敏检波输出空域3D网格图像; (i) 输入0 dB, 整流 + 滤波方法输出空域2D图像; (j) 输入0 dB, 整流 + 滤波方法输出空域3D网格图像; (k) 信噪比–30 dB调幅信号; (l) 输入–30 dB, 二维相敏检波输出空域2D图像; (m) 输入–30 dB, 二维相敏检波输出空域3D网格图像; (n) 输入–30 dB, 整流 + 滤波方法输出空域2D图像; (o) 输入–30 dB, 整流 + 滤波方法输出空域3D网格图像

    Figure 4.  Noise suppression characteristics of two demodulation methods in different noise background: (a) Amplitude-modulated signal of 60 dB; (b) output spatial image of 2D PSD in case of 60 dB; (c) output spatial domain 3D mesh image of 2D PSD in case of 60 dB; (d) output spatial image of rectifier + filtering method in case of 60 dB; (e) output spatial domain 3D mesh image of rectifier + filtering method in case of 60 dB; (f) amplitude-modulated signal of 0 dB; (g) output spatial image of 2D PSD in case of 0 dB; (h) output spatial domain 3D mesh image of 2D PSD in case of 0 dB; (i) output spatial image of rectifier + filtering method in case of 0 dB; (j) output spatial domain 3D mesh image of rectifier + filtering method in case of 0 dB; (k) amplitude-modulated signal of –30 dB; (l) output spatial image of 2D PSD in case of –30 dB; (m) output spatial domain 3D mesh image of 2D PSD in case of –30 dB; (n) output spatial image of rectifier + filtering method in case of –30 dB; (o) output spatial domain 3D mesh image of rectifier + filtering method in case of –30 dB.

    图 5  两种不同检波方法输出信噪比随输入信噪比的变化

    Figure 5.  Variation curve of output signal-to-noise ratio with input signal-to-noise ratio for two demodulation methods.

    图 6  屏蔽玻璃典型缺陷图像 (a) 黑点; (b) 划痕; (c) 白线

    Figure 6.  Typical defect images of shielding glass: (a) Black spot; (b) scratch; (c) white line.

    图 7  屏蔽玻璃缺陷检测算法流程 (a) 直接滤波方法; (b) 整流 + 滤波方法; (b) 二维相敏检波方法之一(近似提取载波); (d) 二维相敏检波方法之二(精确提取载波)

    Figure 7.  Flow chart of defect detection algorithm for shielding glass: (a) Direct filtering method; (b) rectifier + filtering method; (c) 2D PSD(extracting carrier approximately); (d) 2D PSD(extracting carrier accurately).

    图 8  二维相敏检波方法屏蔽玻璃缺陷识别过程 (a) 屏蔽玻璃原始二维图像; (b) 原始二维图像幅度谱2D显示; (c) 原始二维图像幅度谱3D网格显示; (d) 载波幅度谱2D显示; (e) 载波幅度谱3D网格显示; (f) 提取的载波图像; (g) 乘法器输出图像; (h) 乘法器输出图像幅度谱2D显示; (i) 乘法器输出图像幅度谱3D网格显示; (j) 滤波器幅度谱; (k) 滤波器输出图像幅度谱2D显示; (l) 滤波器输出图像幅度谱3D网格显示; (m) 滤波器输出图像2D显示; (n) 滤波器输出图像3D网格显示; (o) 缺陷二值化图像

    Figure 8.  Detection process of defects in shielding glass for 2D PSD: (a) Original 2D image of shielding glass; (b) amplitude spectrum 2D display of original image; (c) amplitude spectrum 3D mesh display of original image; (d) amplitude spectrum 2D display of carrier; (e) amplitude spectrum 3D mesh display of carrier; (f) extracted carrier image; (g) output image of multiplier; (h) amplitude spectrum 2D display of output image of multiplier; (i) amplitude spectrum 3D mesh display of output image of multiplier; (j) amplitude spectrum 2D display of filter; (k) amplitude spectrum 2D display of output image of filter; (l) amplitude spectrum 3D mesh display of output image of filter; (m) 2D display of output image of filter; (n) 3D mesh display of output image of filter; (o) binary image of defect.

    图 9  四种屏蔽玻璃缺陷检测算法输出图像信噪比对比 (a) 黑点缺陷原始图像; (b) 划痕缺陷原始图像; (c) 白线缺陷原始图像; (d) 黑点缺陷直接滤波方法输出图像; (e) 划痕缺陷直接滤波方法输出图像; (f) 白线缺陷直接滤波方法输出图像; (g) 黑点缺陷整流滤波方法输出图像; (h) 划痕缺陷整流滤波方法输出图像; (i) 白线缺陷整流滤波方法输出图像; (j) 黑点缺陷二维相敏检波方法(近似提取载波)输出图像; (k) 划痕缺陷二维相敏检波方法(近似提取载波)输出图像; (l) 白线缺陷二维相敏检波方法(近似提取载波)输出图像; (m) 黑点缺陷二维相敏检波方法(精确提取载波)输出图像; (n) 划痕缺陷二维相敏检波方法(精确提取载波)输出图像; (o) 白线缺陷二维相敏检波方法(精确提取载波)输出图像

    Figure 9.  Signal-to-noise ratio of defect output images for different detection methods: (a) Original 2D image of black spot defect; (b) original 2D image of scratch defect; (c) original 2D image of white line defect; (d) image of black spot defect achieved by filtering method; (e) image of scratch defect achieved by filtering method; (f) image of white line defect achieved by filtering method; (g) image of black spot defect achieved by rectifier + filtering method; (h) image of scratch defect achieved by rectifier + filtering method; (i) image of white line defect achieved by rectifier + filtering method; (j) image of black spot defect achieved by 2D PSD (extracting carrier approximately) method; (k) image of scratch defect achieved by 2D PSD (extracting carrier approximately) method; (l) image of white line defect achieved by 2D PSD (extracting carrier approximately) method; (m) image of black spot defect achieved by 2D PSD (extracting carrier accurately) method; (n) image of scratch defect achieved by 2D PSD (extracting carrier accurately) method; (o) image of white line defect achieved by 2D PSD (extracting carrier accurately) method.

    图 10  外加载波方法普通玻璃缺陷检测结果 (a) 软件生成的二维载波图像; (b) 投影仪投射的未加调制的载波图像; (c) 相机获取的已调制图像; (d) 强环境光下的已调制图像; (e) 叠加了噪声的已调制图像; (f)图(c)和(d)解调后的2D图像; (g)图(c)和(d)解调后的3D网格显示图像; (h) 图(e)解调后的3D网格显示图像

    Figure 10.  Detection results of glass defects by using external carrier method: (a) 2D carrier image generated by software; (b) unmodulated carrier image projected by projector; (c) 2D modulated image acquired by camera; (d) modulated image in strong ambient light: (e) modulated image superimposed with noise; (f) demodulated 2D image of (c) and (d); (g) demodulated 3D mesh image of (c) and (d); (h) demodulated 3D mesh image of (e).

  • [1]

    牟畅, 王彩霞, 段可, 刘鹏 2018 长春理工大学学报(自然科学版) 41 86Google Scholar

    Mu C, Wang C X, Duan K, Liu P 2018 J. Changchun Univ. Sci. Technol. Natural Science Edition 41 86Google Scholar

    [2]

    武博宇 2018 硕士学位论文(长春: 长春理工大学)

    Wu B Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [3]

    官庆 2016 光学与光电技术 14 87

    Guan Q 2016 Opt. Optoelectr. Technol. 14 87

    [4]

    邹昀哲 2016 科技经济导刊 02 85

    Zou Y Z 2016 Technol. Economic Guide 02 85

    [5]

    王建立 2015 飞行器测控学报 34 489

    Wang J L 2015 J. Spacecraft TT&C Technol. 34 489

    [6]

    丁珏, 黄传伟, 陈珣, 李斯伟, 梁晓会 2014 光学与光电技术 12 35

    Ding Y, Huang C W, Chen X, Li S W, Liang X H 2014 Opt. Optoelectr. Technol. 12 35

    [7]

    叶松, 严浩方, 孙晓兵, 汪杰君, 王新强, 王方原, 李树, 甘永莹, 张文涛 2019 光学学报 39 74

    Ye S, Yan H W, Sun X B, Wang J J, Wang X Q, Wang F Y, Li S, Gan Y Y, Zhang W T 2019 Acta Opt. Sin. 39 74

    [8]

    杨鲁新, 董文博 2018 载人航天 24 55Google Scholar

    Yang L X, Dong W B 2018 Manned Spaceflight 24 55Google Scholar

    [9]

    郝勤正, 杨玲, 甄小琼, 刘汉明 2018 激光与光电子学进展 55 125

    Hao Q Z, Yang L, Zhen X Q, Liu H M 2018 Laser & Optoelectronics Progress 55 125

    [10]

    Thomsen C, Grahn H T, Maris H J 1986 Phys. Rev. B 34 4129Google Scholar

    [11]

    Stewart C E, Hooper I R, Sambles J R 2008 J. Phys. D: Appl. Phys. 41 105408

    [12]

    Johnston N S 2009 Ph. D. Dissertation (Nottingham: University of Nottingham

    [13]

    刘灏, 宋岩峰, 张西京, 孙卫平, 李杰 2016 激光与红外 46 1441Google Scholar

    Liu H, Song Y F, Zhang X J, Sun W P, Li J 2016 Laser & Infrared 46 1441Google Scholar

    [14]

    Johnston N S, Light R, Zhang J, Somekh M, Pitter M 2011 Proc. SPIE 73 807303

    [15]

    Hornbeck L J 1990 Proc. SPIE Spatial Light Modulators and Applications 1150 86

    [16]

    Jia Y Q, Feng Q, Zhang B, Wang W, Lin C Y, Ding Y C 2018 Chin. Phys. Lett. 35 48

    [17]

    冯维, 张福民, 王惟婧, 曲兴华 2017 物理学报 66 234201Google Scholar

    Feng W, Zhang F M, Wang W J, Qu X H 2017 Acta Phys. Sin. 66 234201Google Scholar

    [18]

    李威威 2018 硕士学位论文(西安: 西安电子科技大学)

    Li W W 2018 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [19]

    马翠 2018 博士学位论文(深圳: 中国科学院大学(中国科学院深圳先进技术研究院)

    Ma C 2018 Ph. D. Dissertation (Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) (in Chinese)

    [20]

    王惟婧 2017 硕士学位论文(天津: 天津大学)

    Wang W J 2017 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [21]

    王淑仙 2008 博士学位论文(上海: 华东师范大学)

    Wang S X 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [22]

    吴创奇 2016 硕士学位论文(南京: 南京理工大学)

    Wu C Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    吉莉 2015 硕士学位论文(南京: 南京理工大学)

    Ji L 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)

  • [1] Li Min, Luo Yi-Han, Li Tai-Lin, Zhao Kai-Yuan, Tan Yi, Xie Zong-Liang. Adaptive Gating for Low Signal-to-Noise Ratio Non-Line-of-Sight Imaging. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241535
    [2] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [3] Shi Ping, Ma Jian, Qian Xuan, Ji Yang, Li Wei. Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor. Acta Physica Sinica, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [4] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [5] Ma Aai-Ru, Sui Zhan, Feng Guo-Ying, Sun Nian-Chun, Wang Yi-Shan, Zhang Bin, Chen Jian-Guo. Theoretical analysis on scanning spectral filter method for signal-noise-ratio improvment in femtosecond laser system. Acta Physica Sinica, 2012, 61(7): 074206. doi: 10.7498/aps.61.074206
    [6] Zeng Bing, Zeng Shu-Guang, Zhang Bin, Sun Nian-Chun, Sui Zhan. A scanning filtering method for enhancing the signal-to-noise ratio of chirped laser pulse. Acta Physica Sinica, 2012, 61(15): 154209. doi: 10.7498/aps.61.154209
    [7] Li Wei-Chang, Wang Zhao-Hua, Liu Cheng, Teng Hao, Wei Zhi-Yi. Contrast ratio of femtosecond ultraintense Ti:sapphire laser with multi-pass amplifier. Acta Physica Sinica, 2011, 60(12): 124210. doi: 10.7498/aps.60.124210
    [8] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [9] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [10] Li Xue-Xia, Feng Jiu-Chao. A blind separation method for chaotic signals. Acta Physica Sinica, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [11] Analyzing the noise resistance effect for two chaos secure systems. Acta Physica Sinica, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [12] Ning Li-Juan, Xu Wei. Stochastic resonance in optical bistable system. Acta Physica Sinica, 2007, 56(4): 1944-1947. doi: 10.7498/aps.56.1944
    [13] Zhou Bing-Chang, Xu Wei. Stochastic resonance in an asymmetric bistable system driven by mixed periodic force and noises. Acta Physica Sinica, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [14] Dong Xiao-Juan. Stochastic resonance in an asymmetric bistable system with time-delayed feedback and correlated noises. Acta Physica Sinica, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [15] Yuan Zhi-Lin, Zhang Chun-Min, Zhao Bao-Chang. Study of SNR of a novel polarization interference imaging spectrometer. Acta Physica Sinica, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [16] Li Yue, Lu Peng, Yang Bao-Jun, Zhao Xue-Ping. Applying a special kind of two coupled Duffing oscillator system to detect periodic signals under the background of strong colored noise. Acta Physica Sinica, 2006, 55(4): 1672-1677. doi: 10.7498/aps.55.1672
    [17] Jin Yan-Fei, Xu Wei, Li Wei, Xu Meng. Stochastic resonance for periodically modulated noise in a linear system. Acta Physica Sinica, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [18] Xu Wei, Jin Yan-Fei, Xu Meng, Li Wei. Stochastic resonance for bias-signal-modulated noise in a linear system. Acta Physica Sinica, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [19] Li Yue, Yang Bao-Jun, Shi Yao-Wu. Chaos-based weak sinusoidal signal detection approach under colored noise background. Acta Physica Sinica, 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
    [20] Kang Yan-Mei, Xu Jian-Xue, Xie Yong. Stochastic resonance in two-dimensional Brownian motion in the weak noise limit. Acta Physica Sinica, 2003, 52(4): 802-808. doi: 10.7498/aps.52.802
Metrics
  • Abstract views:  8225
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2019
  • Accepted Date:  12 July 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回