Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation and analyze of magnetic resonance sounding with adiabatic pulse for groundwater exploration

Yang Yu-Jing Zhao Han-Qing Wang Peng-Fei Lin Ting-Ting

Citation:

Numerical simulation and analyze of magnetic resonance sounding with adiabatic pulse for groundwater exploration

Yang Yu-Jing, Zhao Han-Qing, Wang Peng-Fei, Lin Ting-Ting
PDF
HTML
Get Citation
  • Magnetic resonance sounding (MRS) technology used to detect groundwater directly and quantificationally, which owns the advantages of rich information and low cost. In these years, it has shown significant potential applications in hydrological detections. Considering the traditional measurements with the geomagnetic field, the nano-valt MRS signals are easy to suppress to environmental noise. As one of the MRS signal enhancement methods, the adiabatic pulse was quite popular recently. It is transmitted with variable frequency and amplitude pulse satisfying the adiabatic condition, which can enhance the signal amplitude and signal-to-noise ratio several times. However, there are only a few reports about this method, especially its geophysical modeling. Thus, we introduce the calculating progress of transverse magnetization and kernel function for this method. By employing the interpolation, the computation cost of forward modeling is obviously reduced. Moreover, several different settings of adiabatic transmitting factors are also proceeded to obtain certain results. In conclusion, a pulse moment with 80 ms transmitting duration and 30 quality factor produces a maximum signal amplitude that is enhanced 16.56 times for deep areas. The research in this paper could provide powerful support for MRS method used in noisy environments.
      Corresponding author: Lin Ting-Ting, ttlin@jlu.edu.cn
    [1]

    吴璐苹, 石昆法, 李荫槐, 李松浩 1996 地球物理学报 39 712Google Scholar

    Wu L P, Shi K F, Li Y H, Li S H 1996 Chin. J. Geophys. 39 712Google Scholar

    [2]

    Di Q Y, Xue G Q, Fu C M, Wang R 2020 Sci. Bull. 65 611Google Scholar

    [3]

    Di Q Y, Wang M Y 2010 Bull. Eng. Geol. Environ. 69 105Google Scholar

    [4]

    Di Q Y, Xue G Q, Lei D, Wang Z X, Zhang Y M, Wang S, Zhang Q M 2018 J. Appl. Geophys. 158 65Google Scholar

    [5]

    侯彦威 2012 地球物理学进展 27 2698Google Scholar

    Hou Y W 2012 Prog. Geophys. 27 2698Google Scholar

    [6]

    傅良魁, 孟海东, 宋宇辰 1993 物探与化探 6 435

    Fu L K, Meng H D, Song Y C 1993 Geophys. Geochem. Explor. 6 435

    [7]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [8]

    林君, 段清明, 王应吉 2010 核磁共振找水仪原理与应用 (北京: 科学出版社) 第7—13页

    Lin J, Duan Q M, Wang Y J 2010 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp7-13 (in Chinese)

    [9]

    Hertrich M, Braun M, Gunther T 2007 IEEE Trans. Geosci. Remote Sens. 45 3752Google Scholar

    [10]

    潘玉玲, 张昌达 2000 地面核磁共振找水理论和方法 (北京: 中国地质大学出版社) 第1—5页

    Pan Y L, Zhang C D 2000 Theory and Method of Surface Nuclear Magnetic Resonance Instrument for Groundwater Detection (Beijing: China University of Geosciences Press) pp1-5 (in Chinese)

    [11]

    孙淑琴, 林君, 张庆文, 嵇艳鞠 2005 物探与化探 29 153Google Scholar

    Sun S Q, Lin J, Zhang Q W, Ji Y J 2005 Geophys. Geochem. Explor. 29 153Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Mueller-Petke M 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Lin T T, Zhang Y, Lee Y H, Krause H J, Lin J 2014 Rev. Sci. Instrum. 85 114708Google Scholar

    [14]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [15]

    Costabel S, Mueller-Petke M 2014 Near Surf. Geophys. 12 185Google Scholar

    [16]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [17]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [18]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [19]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [20]

    Mueller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [21]

    Lin T T, Zhang Y, Yi X F, Fan T H, Wan L 2018 Geophys. J. Int. 213 727Google Scholar

    [22]

    林婷婷, 张扬, 杨莹, 杨莹, 滕飞, 万玲 2018 地球物理学报 61 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chin. J. Geophys. 61 3812Google Scholar

    [23]

    Grombacher D, Knight R 2015 Geophysics 80 E329Google Scholar

    [24]

    Lin T T, Yang Y J, Teng F, Wan L 2017 Geophys. J. Int. 212 1463Google Scholar

    [25]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [26]

    Tannus A, Garwood M 1997 NMR Biomed. 10 423Google Scholar

    [27]

    Garwood M, DelaBarre L 2002 J. Magn. Reson. 153 155Google Scholar

    [28]

    Wi S, Kim C, Schurko R, Frydman L 2017 J. Magn. Reson. 277 131Google Scholar

    [29]

    Levitt M H 2002 Spin Dynamics-Basics of Nuclear Magnetic Resonance (Chichester: John Wiley & Sons, LTD) pp1–6

    [30]

    Callaghan P 2007 Principles of Nuclear Magnetic Resonance Microscopy (New Zealand: Oxford University Press) pp1–8

    [31]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [32]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev. E 62 1290Google Scholar

    [33]

    Walbrecker J O, Hertrich M, Green A G 2011 Geophysics 76 G1Google Scholar

    [34]

    Grombacher D, Walbrecker J O, Knight R 2014 Geophysics 79 E329Google Scholar

    [35]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [36]

    Baum J, Tycko R, Pines A 1985 Phys. Rev. A 32 3435Google Scholar

    [37]

    Behroozmand A A, Auken E, Fiandaca G, Rejkjaer S 2016 Geophys. J. Int. 205 243Google Scholar

  • 图 1  磁共振激发原理图 (a) 传统方式; (b) 绝热方式

    Figure 1.  Principle of excitation dynamics of magnetic resonance sounding: (a) Traditional type; (b) adiabatic type.

    图 2  绝热磁共振激发过程 (a) 发射时序, 红色曲线为发射电流, 蓝色曲线为FID信号; (b) 激发磁场与磁化强度示意图, 深红箭头和蓝色线分别表示激发磁场与磁化强度

    Figure 2.  Excitation process of the adiabatic pulses: (a) The sequence diagram of the transmitting current (red) and FID signal (blue); (b) the relationship of the excitation magnetic field (dark red arrow) and magnetization (blue line).

    图 3  双曲正切绝热半波横向磁化强度与有效激发磁场关系图(品质因数Q = 30, 脉冲持续时间τ = 80 ms) (a)发射波形实时幅值; (b)频率调制函数; (c)磁化强度x分量、y分量及模值

    Figure 3.  The relationship of transverse magnetization and exciting magnetic based on hyperbolic tangent AHP pulse: (a) The waveform of transmitting current amplitude; (b) its frequency vs. time; (c) magnetization x-component, y-component and real value.

    图 4  相同激发电流分布(1—600 A)情况下, 脉冲持续时间τ不同时, 绝热半波对应的灵敏度核函数实部(品质因数Q = 30) (a) τ = 20 ms; (b) τ = 40 ms; (c) τ = 60 ms; (d) τ = 80 ms; (e) τ = 100 ms; (f) τ = 120 ms; (g) τ = 140 ms; (h) τ = 160 ms

    Figure 4.  The real kernel function of adiabatic half-passage pulses for the same excitation current (1–600 A) corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms; (b) τ = 40 ms; (c) τ = 60 ms; (d) τ = 80 ms; (e) τ = 100 ms; (f) τ = 120 ms; (g) τ = 140 ms; (h) τ = 160 ms.

    图 5  相同激发电流分布情况下, 脉冲持续时间τ不同时绝热半波对应的灵敏度核函数虚部(品质因数Q = 30) (a) τ = 20 ms; (b) τ = 40 ms; (c) τ = 60 ms; (d) τ = 80 ms; (e) τ = 100 ms; (f) τ = 120 ms; (g) τ = 140 ms; (h) τ = 160 ms

    Figure 5.  The imaginary kernel function of adiabatic half-passage pulses for the same excitation current (1–600 A) corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms; (b) τ = 40 ms; (c) τ = 60 ms; (d) τ = 80 ms; (e) τ = 100 ms; (f) τ = 120 ms; (g) τ = 140 ms; (h) τ = 160 ms.

    图 6  相同脉冲矩(0.01—7.3 A·s)情况下, 脉冲持续时间τ不同时绝热半波对应的灵敏度核函数实部(品质因数Q = 30) (a) τ = 20 ms, 最大600 A电流; (b) τ = 40 ms, 最大300 A电流; (c) τ = 60 ms, 最大200 A电流; (d) τ = 80 ms, 最大150 A电流; (e) τ = 100 ms, 最大120 A电流; (f) τ = 120 ms, 最大100 A电流; (g) τ = 140 ms, 最大85.7 A电流; (h) τ = 160 ms, 最大75 A电流

    Figure 6.  The real kernel function of adiabatic half-passage pulses for the same pulse moment corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms with maximum current 600 A; (b) τ = 40 ms with maximum current 300 A; (c) τ = 60 ms with maximum current 200 A; (d) τ = 80 ms with maximum current 150 A; (e) τ = 100 ms with maximum current 120 A; (f) τ = 120 ms with maximum current 100 A; (g) τ = 140 ms with maximum current 85.7 A; (h) τ = 160 ms with maximum current 75 A.

    图 7  相同脉冲矩(0.01—7.3 A.s)情况下, 脉冲持续时间τ不同时绝热半波对应的灵敏度核函数虚部(品质因数Q = 30) (a) τ = 20 ms, 最大600 A电流; (b) τ = 40 ms, 最大300 A电流; (c) τ = 60 ms, 最大200 A电流; (d) τ = 80 ms, 最大150 A电流; (e) τ = 100 ms, 最大120 A电流; (f) τ = 120 ms, 最大100 A电流; (g) τ = 140 ms, 最大85.7 A电流; (h) τ = 160 ms, 最大75 A电流

    Figure 7.  The imaginary kernel function of adiabatic half-passage pulses for the same pulse moment corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms with maximum current 600 A; (b) τ = 40 ms with maximum current 300 A; (c) τ = 60 ms with maximum current 200 A; (d) τ = 80 ms with maximum current 150 A; (e) τ = 100 ms with maximum current 120 A; (f) τ = 120 ms with maximum current 100 A; (g) τ = 140 ms with maximum current 85.7 A; (h) τ = 160 ms with maximum current 75 A.

    图 8  相同脉冲矩(0.01—7.3 A·s)情况下, 在不同脉冲持续时间及电流条件时绝热半波对应的正演响应(假设地下半空间内存在10%均匀的含水量, 发射线圈的品质因数Q = 30)

    Figure 8.  The forward modeling of adiabatic half-passage pulse for the same pulse moment (0.01–7.3 A·s) with different τ and current. The modeling assume a homogeneous aquifer subsurface with 10% water content, the quality factor Q = 30.

    图 9  脉冲持续时间τ = 80 ms, 品质因数Q不同时绝热半波对应的灵敏度核函数的(a), (b), (c), (d)实部和(e), (f), (g), (h)虚部 (a), (e) Q = 10; (b), (f) Q = 20; (c), (g) Q = 30; (d), (h) Q = 40

    Figure 9.  The (a), (b), (c), (d) real and (e), (f), (g), (h) imaginary part of the kernel function of adiabatic half-passage pulses for different quality factor Q with τ = 80 ms: (a), (e) Q = 10; (b), (f) Q = 20; (c), (g) Q = 30; (d), (h) Q = 40.

    图 10  相同绝热脉冲电流(1—600 A)条件下, 品质因数Q不同时绝热半波对应的正演响应(灰色虚线为传统激发方式信号响应, 假设地下半空间内存在10%均匀的含水量, 发射脉冲持续时间为80 ms)

    Figure 10.  The forward modeling of adiabatic half-passage pulse for the same pulse current (1–600 A) with different quality factor Q (The gray dotted line is the initial amplitude of traditional nuclear magnetic resonance responses). The modeling assume a homogeneous aquifer subsurface with 10% water content with τ = 80 ms.

  • [1]

    吴璐苹, 石昆法, 李荫槐, 李松浩 1996 地球物理学报 39 712Google Scholar

    Wu L P, Shi K F, Li Y H, Li S H 1996 Chin. J. Geophys. 39 712Google Scholar

    [2]

    Di Q Y, Xue G Q, Fu C M, Wang R 2020 Sci. Bull. 65 611Google Scholar

    [3]

    Di Q Y, Wang M Y 2010 Bull. Eng. Geol. Environ. 69 105Google Scholar

    [4]

    Di Q Y, Xue G Q, Lei D, Wang Z X, Zhang Y M, Wang S, Zhang Q M 2018 J. Appl. Geophys. 158 65Google Scholar

    [5]

    侯彦威 2012 地球物理学进展 27 2698Google Scholar

    Hou Y W 2012 Prog. Geophys. 27 2698Google Scholar

    [6]

    傅良魁, 孟海东, 宋宇辰 1993 物探与化探 6 435

    Fu L K, Meng H D, Song Y C 1993 Geophys. Geochem. Explor. 6 435

    [7]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [8]

    林君, 段清明, 王应吉 2010 核磁共振找水仪原理与应用 (北京: 科学出版社) 第7—13页

    Lin J, Duan Q M, Wang Y J 2010 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp7-13 (in Chinese)

    [9]

    Hertrich M, Braun M, Gunther T 2007 IEEE Trans. Geosci. Remote Sens. 45 3752Google Scholar

    [10]

    潘玉玲, 张昌达 2000 地面核磁共振找水理论和方法 (北京: 中国地质大学出版社) 第1—5页

    Pan Y L, Zhang C D 2000 Theory and Method of Surface Nuclear Magnetic Resonance Instrument for Groundwater Detection (Beijing: China University of Geosciences Press) pp1-5 (in Chinese)

    [11]

    孙淑琴, 林君, 张庆文, 嵇艳鞠 2005 物探与化探 29 153Google Scholar

    Sun S Q, Lin J, Zhang Q W, Ji Y J 2005 Geophys. Geochem. Explor. 29 153Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Mueller-Petke M 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Lin T T, Zhang Y, Lee Y H, Krause H J, Lin J 2014 Rev. Sci. Instrum. 85 114708Google Scholar

    [14]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [15]

    Costabel S, Mueller-Petke M 2014 Near Surf. Geophys. 12 185Google Scholar

    [16]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [17]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [18]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [19]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [20]

    Mueller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [21]

    Lin T T, Zhang Y, Yi X F, Fan T H, Wan L 2018 Geophys. J. Int. 213 727Google Scholar

    [22]

    林婷婷, 张扬, 杨莹, 杨莹, 滕飞, 万玲 2018 地球物理学报 61 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chin. J. Geophys. 61 3812Google Scholar

    [23]

    Grombacher D, Knight R 2015 Geophysics 80 E329Google Scholar

    [24]

    Lin T T, Yang Y J, Teng F, Wan L 2017 Geophys. J. Int. 212 1463Google Scholar

    [25]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [26]

    Tannus A, Garwood M 1997 NMR Biomed. 10 423Google Scholar

    [27]

    Garwood M, DelaBarre L 2002 J. Magn. Reson. 153 155Google Scholar

    [28]

    Wi S, Kim C, Schurko R, Frydman L 2017 J. Magn. Reson. 277 131Google Scholar

    [29]

    Levitt M H 2002 Spin Dynamics-Basics of Nuclear Magnetic Resonance (Chichester: John Wiley & Sons, LTD) pp1–6

    [30]

    Callaghan P 2007 Principles of Nuclear Magnetic Resonance Microscopy (New Zealand: Oxford University Press) pp1–8

    [31]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [32]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev. E 62 1290Google Scholar

    [33]

    Walbrecker J O, Hertrich M, Green A G 2011 Geophysics 76 G1Google Scholar

    [34]

    Grombacher D, Walbrecker J O, Knight R 2014 Geophysics 79 E329Google Scholar

    [35]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [36]

    Baum J, Tycko R, Pines A 1985 Phys. Rev. A 32 3435Google Scholar

    [37]

    Behroozmand A A, Auken E, Fiandaca G, Rejkjaer S 2016 Geophys. J. Int. 205 243Google Scholar

  • [1] Yu Jia-Cheng, Zhong Jia-Yong, An Wei-Ming, Ping Yong-Li. Potential distribution behind target in intense and short pulsed laser-driven magnetic reconnection. Acta Physica Sinica, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [2] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [4] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [5] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [6] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [7] Huang Pei-Pei, Liu Da-Gang, Liu La-Qun, Wang Hui-Hui, Xia Meng-Ju, Chen Ying. Three-dimensional numerical simulation of the single-channel pulsed-power vacuum device. Acta Physica Sinica, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [8] Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min. Investigation of experimental parameters of coherent population trapping with cesium vapor cell. Acta Physica Sinica, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [9] Guo Chao-Bo, Shi Yu, Fan Ding, Huang Jian-Kang. Numerical simulation of pulsed current tungesteninert gas (TIG) welding arc. Acta Physica Sinica, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [10] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [12] Deng Yi-Xin, Tu Cheng-Hou, Lü Fu-Yun. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [13] Zhu Chang-Sheng, Wang Zhi-Ping, Jing Tao, Xiao Rong-Zhen. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach. Acta Physica Sinica, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [14] Guo Wen-Qiong, Zhou Xiao-Jun, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [15] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [16] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [17] Zhu Peng-Fei, Qian Lie-Jia, Xue Shao-Lin, Lin Zun-Qi. Numerical studies of characteristics and the design of 1PW optical parametric chirped pulse amplifier for the “Shenguang-Ⅱ” facility. Acta Physica Sinica, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [18] Qin Ying, Wang Xiao-Gang, Dong Chuang, Hao Sheng-Zhi, Liu Yue, Zou Jian-Xin, Wu Ai-Min, Guan Qing-Feng. Temperature field and formation of crater on the surface induced by high curren t pulsed electron beam bombardment. Acta Physica Sinica, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] Zi Bing-Tao, Yao Ke-Fu, Xu Guang-Ming, Cui Jian-Zhong. Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields. Acta Physica Sinica, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [20] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
Metrics
  • Abstract views:  7008
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2020
  • Accepted Date:  08 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回