Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Absorption characteristics of perfect absorber, electromagnetic “black hole” and inner perfectly matched layer

Tao Si-Cen Chen Huan-Yang

Citation:

Absorption characteristics of perfect absorber, electromagnetic “black hole” and inner perfectly matched layer

Tao Si-Cen, Chen Huan-Yang
PDF
HTML
Get Citation
  • The perfectly matched layer plays a key role in electromagnetic simulations, and it makes the infinite space look like a finite space, so that the electromagnetic waves propagating to the boundary seem like their propagations to the infinity. The inner perfectly matched layer has a similar concept, usually in the form of a cylinder or sphere placed inside the physical field. It makes the electromagnetic field matched at the boundary, so that the electromagnetic waves propagate on its convex surface as if they were propagating to an infinite distance, without any scattering. In addition to the perfectly matched layer, planar absorbers can be realized in a variety of ways, such as spatial Kramers-Kronig relations, photonic crystals, metamaterials, etc. On the other hand, the inner cylindrical or spherical absorbers are generally perfect absorbers, electromagnetic “black hole”, etc. Transformation optics always arouse great research interests. For its property of controlling propagation of electromagnetic waves arbitrarily under coordinate mappings, transformation optics has a wide range of applications and has also been used as a theoretical tool for designing absorbers. However, to the authors’ knowledge, there is no effective method to achieve perfect absorption of inner absorbers with no reflections and independence of incident angle or wave frequency. In this paper, transformation optics theory is used to design an inner perfectly matched layer whose material parameters are obtained by a radial coordinate transformation of the complex plane. Through investigating the electromagnetic wave patterns and the two-dimensional far-field diagrams, we intuitively compare and analyse one by one the absorption characteristics of the matched and mismatched perfect absorber, electromagnetic “black hole” and the inner perfectly matched layer. It is found that the matched perfect absorber has better absorption property than mismatched one and electromagnetic “black hole”. In the electromagnetic “black hole” there appear a lot of scatterings. While our inner perfectly matched layer demonstrates the best effectiveness of absorption with no back scattering. It can be used as an absorbing kernel in electromagnetic simulations and relevant experiments.
      Corresponding author: Chen Huan-Yang, kenyon@xmu.edu.cn
    [1]

    Berenger J P 1994 J. Comput. Phys. 114 185Google Scholar

    [2]

    Chew W C, Weedon W H 1994 Microwave Opt. Technol. Lett. 7 599Google Scholar

    [3]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [4]

    Ye D X, Cao C, Zhou T Y, Huangfu J T, Zheng G A, Ran L X 2017 Nat. Commun. 8 51Google Scholar

    [5]

    Jiang W, Ma Y G, Yuan J, Yin G, Wu W H, He S L 2016 Laser Photonics Rev. 11 1600253Google Scholar

    [6]

    Luo J, Lai Y 2019 Opt. Express 27 015800Google Scholar

    [7]

    Landy N L, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [9]

    Leonhardt U, Philbin T G 2006 New J. Phys. 8 247Google Scholar

    [10]

    Narimanov E E, Kildishev A V 2009 Appl. Phys. Lett. 95 041106Google Scholar

    [11]

    Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006Google Scholar

    [12]

    Argyropoulos C, Kallos E, Hao Y 2010 J. Opt. Soc. Am. B 27 2020Google Scholar

    [13]

    Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902Google Scholar

    [14]

    Chen H Y, Miao R X, Li M 2010 Opt. Express 18 15183Google Scholar

    [15]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [17]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [18]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [19]

    Odabasi H, Teixeira F L, Chew W C 2011 J. Opt. Soc. Am. B 28 1317Google Scholar

    [20]

    Popa B I, Cummer S A 2011 Phys. Rev. A 84 063837Google Scholar

    [21]

    Sainath K, Teixeira F L 2015 J. Opt. Soc. Am. B 32 1645Google Scholar

    [22]

    周梦颖, 陶思岑, 杨福宝, 陈焕阳 2019 厦门大学学报 (自然科学版) 58 783

    Zhou M Y, Tao S C, Yang F B, Chen H Y 2019 J. Xiamen Univ. (Nat. Sci.) 58 783

  • 图 1  两个完美吸收体的吸收及散射特性对比图 (a) 吸收体 ($\varepsilon=1+{\rm i}, \mu=1$) 的电场强度图; (b) 吸收体 ($ \varepsilon=1+0.5 {\rm i}, \mu=1$) 的电场强度图; (c) 两个吸收体的远场分布对比图; (d) 两个吸收体的远场分布对比放大图

    Figure 1.  Comparison diagram of absorption and scattering characteristics of two perfect absorbers: (a) The electric field intensity diagram of absorber ($ \varepsilon=1+{\rm i}, \mu=1$); (b) the electric field intensity diagram of absorber ($ \varepsilon=1+0.5 {\rm i}, \mu=1$); (c) the comparison diagram of the far field distribution of the two absorbers; (d) the comparison diagram of the enlarged far field distribution of the two absorbers

    图 2  不同完美吸收体的吸收特性对比 (a), (b) 1组吸收体阻抗匹配与不匹配的远场对比图和远场对比放大图; (c), (d) 2 组吸收体阻抗匹配与不匹配的远场对比图和远场对比放大图; (e), (f)两组阻抗匹配的吸收体的远场对比图和远场对比放大图

    Figure 2.  Absorption characteristics comparison of different perfect absorbers: (a) The far field comparison diagram and (b) far field comparison enlarged diagram of impedance-matched and impedance-mismatched absorbers of the first set; (c) the far field comparison diagram and (d) far field comparison enlarged diagram of impedance-matched and impedance-mismatched absorbers of the second set; (e) the far field comparison diagram and (f) far field comparison enlarged diagram of impedance-matched absorbers of the above two sets

    图 3  电磁“黑洞”吸收特性分析 (a) 阻抗不匹配和(b) 阻抗匹配的电磁“黑洞”电场强度图; (c) 阻抗不匹配和(d) 阻抗匹配的电磁“黑洞”电场z分量图; 阻抗不匹配和阻抗匹配的电磁“黑洞”的(e) 远场对比图和(f) 远场对比放大图

    Figure 3.  Analysis of absorption characteristics of electromagnetic “black hole”: The electric field intensity diagram of (a) impedance-mismatched and (b) impedance-matched electromagnetic “black hole”; the electric field z component diagram of (c) impedance-mismatched and (d) impedance-matched electromagnetic “black hole”; (e) the far field comparison diagram and (f) far field comparison enlarged diagram of impedance-mismatched and impedance-matched electromagnetic “black hole”

    图 4  完美吸收体与电磁“黑洞”吸收特性对比 (a), (b)阻抗不匹配的完美吸收体和电磁“黑洞”的远场对比图和远场对比放大图; (c), (d)阻抗匹配的完美吸收体和电磁“黑洞”的远场对比图和远场对比放大图

    Figure 4.  Absorption characteristics comparison of perfect absorber and electromagnetic “black hole”: (a) The far field comparison diagram and (b) far field comparison enlarged diagram of impedance-mismatched perfect absorber and electromagnetic “black hole”; (c) the far field comparison diagram and (d) far field comparison enlarged diagram of impedance-matched perfect absorber and electromagnetic “black hole”

    图 5  径向变换关系曲线

    Figure 5.  Radial transformation relationship curve

    图 6  完美吸收体、电磁“黑洞”与内置完美匹配层(inner PML)的吸收特性对比 (a), (b)内置完美匹配层的电场强度图和电场z分量图; (c), (d)阻抗匹配的完美吸收体和内置完美匹配层的远场对比图和远场对比放大图; (e), (f)阻抗匹配的电磁“黑洞”和内置完美匹配层的远场对比图和远场对比放大图

    Figure 6.  Absorption characteristics comparison of perfect absorber, electromagnetic “black hole” and inner PML: (a) Electric field intensity diagram and (b) electric field z component diagram of inner PML; (c) far field comparison diagram and (d) far field comparison enlarged diagram of impedance-matched perfect absorber and inner PML; (e) far field comparison diagram and (f) far field comparison enlarged diagram of impedance-matched electromagnetic “black hole” and inner PML

  • [1]

    Berenger J P 1994 J. Comput. Phys. 114 185Google Scholar

    [2]

    Chew W C, Weedon W H 1994 Microwave Opt. Technol. Lett. 7 599Google Scholar

    [3]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [4]

    Ye D X, Cao C, Zhou T Y, Huangfu J T, Zheng G A, Ran L X 2017 Nat. Commun. 8 51Google Scholar

    [5]

    Jiang W, Ma Y G, Yuan J, Yin G, Wu W H, He S L 2016 Laser Photonics Rev. 11 1600253Google Scholar

    [6]

    Luo J, Lai Y 2019 Opt. Express 27 015800Google Scholar

    [7]

    Landy N L, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [9]

    Leonhardt U, Philbin T G 2006 New J. Phys. 8 247Google Scholar

    [10]

    Narimanov E E, Kildishev A V 2009 Appl. Phys. Lett. 95 041106Google Scholar

    [11]

    Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006Google Scholar

    [12]

    Argyropoulos C, Kallos E, Hao Y 2010 J. Opt. Soc. Am. B 27 2020Google Scholar

    [13]

    Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902Google Scholar

    [14]

    Chen H Y, Miao R X, Li M 2010 Opt. Express 18 15183Google Scholar

    [15]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [17]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [18]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [19]

    Odabasi H, Teixeira F L, Chew W C 2011 J. Opt. Soc. Am. B 28 1317Google Scholar

    [20]

    Popa B I, Cummer S A 2011 Phys. Rev. A 84 063837Google Scholar

    [21]

    Sainath K, Teixeira F L 2015 J. Opt. Soc. Am. B 32 1645Google Scholar

    [22]

    周梦颖, 陶思岑, 杨福宝, 陈焕阳 2019 厦门大学学报 (自然科学版) 58 783

    Zhou M Y, Tao S C, Yang F B, Chen H Y 2019 J. Xiamen Univ. (Nat. Sci.) 58 783

  • [1] Huang Xiao-Dong, He Bin-Xuan, Song Zhen, Mi Yuan-Yuan, Qu Zhi-Lin, Hu Gang. A review of advances in multiscale modelings, computations, and dynamical theories of arrhythmias. Acta Physica Sinica, 2024, 73(21): 218702. doi: 10.7498/aps.73.20240977
    [2] Feng Nai-Xing, Wang Huan, Zhu Zi-Xian, Dong Chun-Zhi, Li Hong-Yang, Zhang Yu-Xian, Yang Li-Xia, Huang Zhi-Xiang. Intelligent algorithm of extreme gradient boosting based perfectly matched monolayer and its efficient absorption on airborne transient electromagnetics problems. Acta Physica Sinica, 2024, 73(6): 065201. doi: 10.7498/aps.73.20231724
    [3] Wang Xiu-Ming, Zhou Yin-Qiu. Research on elastodynamic theory based on the framework of energy conservation. Acta Physica Sinica, 2023, 72(7): 074501. doi: 10.7498/aps.72.20212272
    [4] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [5] Wang Zheng-Yu, Huang Fei, Xue Run-Yu, Wang Zheng-Ling. Perfect absorption of symmetric grating structure based on the continuous metal film. Acta Physica Sinica, 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [6] Tudahong Aba, Qu Yu, Bai Jun-Ran, Zhang Zhong-Yue. Studies of circular dichroism of planar composite metal nanostructure arrays. Acta Physica Sinica, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [7] Chen Lei-Ming. Hydrodynamic theory of dry active matter. Acta Physica Sinica, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [8] Shen Yun, Yu Guo-Ping, Fu Ji-Wu. Theoretical analysis of coherent perfect absorption in one-dimensional anti-laser. Acta Physica Sinica, 2012, 61(16): 164204. doi: 10.7498/aps.61.164204
    [9] Wang Jian, Li Hui-Feng, Huang Yun-Hua, Yu Hai-Bo, Zhang Yue. Microwave absorbing properties of composite coating by carbon nanotube and nanoscaled tetrapod-shaped ZnO. Acta Physica Sinica, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [10] Wang Shuai, Zhang Bing-Yun, Zhang Yun-Hai. Husimi function and Wehrl entropy in thermo field dynamics. Acta Physica Sinica, 2010, 59(3): 1775-1779. doi: 10.7498/aps.59.1775
    [11] Cao Jia-Wei, Huang Yun-Hua, Zhang Yue, Liao Qing-Liang, Deng Zhan-Qiang. Research on electromagnetic wave absorbing properties of nano tetraleg ZnO. Acta Physica Sinica, 2008, 57(6): 3641-3645. doi: 10.7498/aps.57.3641
    [12] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [13] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [14] Yu Xiao-Guang, Wang Bing-Bing, Cheng Tai-Wang, Li Xiao-Feng, Fu Pan-Ming. Quantum electrodynamics theory of high-order above-threshold ionization. Acta Physica Sinica, 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [15] Jia Li-Qun. A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica, 2003, 52(5): 1039-1043. doi: 10.7498/aps.52.1039
    [16] Xiao Wan-Neng, Zhao Ji, Wang Wei-Jiang, Li Run-Hua, Zhou Jian-Ying. Linear optical absorption properties and internal electromagnetic field distribu tions of periodic multiple quantum wells. Acta Physica Sinica, 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
    [17] LI ZHI-QIANG, CHEN MIN, SHEN WEN-BIN, LI JING-DE. DYNAMICS THEORY OF FERROELECTRIC POLARONS. Acta Physica Sinica, 2001, 50(12): 2477-2481. doi: 10.7498/aps.50.2477
    [18] WANG GUI-YING. PRELIMINARY STUDY ON THE NEAR FIELD OPTICS. Acta Physica Sinica, 1997, 46(11): 2154-2159. doi: 10.7498/aps.46.2154
    [19] YI LIN, YAO KAI-LUN. DYNAMIC THEORY FOR DISORDERED SUPERCONDUCTIVITY. Acta Physica Sinica, 1993, 42(8): 1352-1355. doi: 10.7498/aps.42.1352
    [20] CHEN SHI-KANG. ON THE DYNAMICAL THEORY OF HEAT TRANSPORT PROCESS. Acta Physica Sinica, 1962, 18(6): 305-310. doi: 10.7498/aps.18.305
Metrics
  • Abstract views:  11292
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2020
  • Accepted Date:  10 March 2020
  • Available Online:  12 May 2020
  • Published Online:  05 August 2020

/

返回文章
返回