搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量守恒框架下的波动力学理论研究

王秀明 周吟秋

引用本文:
Citation:

基于能量守恒框架下的波动力学理论研究

王秀明, 周吟秋

Research on elastodynamic theory based on the framework of energy conservation

Wang Xiu-Ming, Zhou Yin-Qiu
PDF
HTML
导出引用
  • 基于波动力学的基本概念, 提出了在能量守恒框架下建立波动力学方程的新思路与方法. 首先, 回顾了用牛顿第二定律推导波动力学方程, 同时回顾并分析了利用Hamilton变分原理, 推导了在连续介质中的Lagrange方程、Hamilton正则方程, 以及相应的波动力学方程; 其次, 在能量守恒的框架下, 建立了连续介质的Lagrange方程、Hamilton正则方程和波动力学方程, 并证明其结果与利用经典力学推导的结果的一致性, 特别地, 澄清了用Hamilton变分原理建立保守系统下连续介质的Lagrange方程和Hamilton正则方程时在边界条件应用时的一些模糊认识. 在能量守恒框架下建立一系列动力学方程, 为我们在不涉及泛函求极值的变分原理等基础上刻画和表述复杂介质中波动现象的演化规律提供了另一种途径, 也深入探讨了最小作用原理的物理本质. 最后, 在能量守恒的框架下给出了建立黏弹性介质中的波动力学微分方程的应用.
    Based on the analysis of establishing dynamic equations by using Newton's mechanics, Lagrange's, and Hamilton's mechanics, a new idea of establishing elastodynamic equations under the framework of energy conservation is proposed. Firstly, Newton’s second law is used to derive wave equations of motion. Secondly, Lagrange's equation, Hamilton's canonical equations, and the corresponding dynamical equations in a continuum medium are derived by using Hamilton’s variational principle. Thirdly, under the framework of energy conservation, Lagrange's equation, Hamilton's canonical equations, and the acoustic dynamic equations of the continuum are established, and the results are proved to be consistent with those derived from classical mechanics. Some fuzzy understandings when using Hamilton's variational principle to establish Lagrange’s equation and Hamilton’s canonical equation, are clarified. A series of dynamical equations established under the framework of energy conservation provides an alternative way to characterize and represent the propagation characteristics of wave motions in various complex media without involving the variational principle of functional extremum. Finally, as an application example, the differential equation of elastodynamics in a viscoelastic medium is given under the framework of energy conservation.
      通信作者: 周吟秋, zhouyinqiu@mail.ioa.ac.cn
      Corresponding author: Zhou Yin-Qiu, zhouyinqiu@mail.ioa.ac.cn
    [1]

    Gurtin M E 1964 Arch. Rational Mech. Anal. 16 34Google Scholar

    [2]

    Tiersten H F 1969 Linear Piezoelectric Plate Vibrations (New York: Plenum Press) pp33–35, pp43–46

    [3]

    Achenbach J D 1975 Wave Propagation in Elastic Solids (Netherland: Elsevier) pp51–65

    [4]

    Babich V M, Kiselev A P 2015 Elastic Waves High Frequency Theory (Boca Raton: CRC Press) pp8–10

    [5]

    Shtrikman Z S 1962 J. Mech. Phys. Solids 10 335Google Scholar

    [6]

    张海澜 1985 声学学报 10 223

    Zhang H L 1985 Acta Acustica 10 223

    [7]

    Shen H C, Li S M 2006 Classical Mechanics (Hefei: University of Science and Technology of China Press) pp233, 240 (in Chinese) [沈惠川, 李书明 2006 经典力学(合肥: 中国科学技术大学出版社) 第233, 240页

    [8]

    EerNisse E P, Holland R 1967 Proceedings of the IEEE p1524

    [9]

    Luan P 2018 J. Phys. Commun. 2 075016Google Scholar

    [10]

    Civelek C, Bechteler T F 2008 Int. J. Eng. Sci. 46 1218Google Scholar

    [11]

    Luan P 2020 Crystals 10 863Google Scholar

    [12]

    Gueorguiev V G, Maeder A 2021 Symmetry 13 522Google Scholar

    [13]

    Moiseiwitsch B L 2004 Variational Principles (New York: Dover Publications) pp82–83

    [14]

    Cline D 2019 Variational Principles in Classic Mechanics (Rochester: University of Rochester) pp181–184, 443

    [15]

    唐立民 1991 计算结构力学及其应用 8 343Google Scholar

    Tang L M 1991 Chin. J. Comput. Mech. 8 343Google Scholar

    [16]

    Landau L D, Lifshitz E M 1976 Mechanics (Oxford: Butterworth-Heinemann) p14, 131

    [17]

    Lanczos C 1986 The Variational Principles of Mechanics (4th Ed.) (New York: Dover) pp120–122

    [18]

    Arnold I V 1997 Mathematical Methods of Classical Mechanics (2nd Ed.) (New York: Springer) pp59–60

    [19]

    Goldstein H, Poole C P, Safko J L 2013 Classical Mechanics (3rd Ed.) (Essex: Pearson Education Limited) p35

    [20]

    Morita S 2016 World J. Mech. 6 84Google Scholar

    [21]

    Huang Y C 2003 Mech. Res. Commun. 30 567Google Scholar

    [22]

    黄永畅 2005 物理学报 54 3473Google Scholar

    Huang Y C 2005 Acta. Phys. Sin. 54 3473Google Scholar

    [23]

    Huang Y C, Lee X G, Shao M X 2006 Mod. Phys. Lett. A 21 1107Google Scholar

    [24]

    Huang C and Huang Y C 2020 doi: 10.20944/preprints202008.0334.v3

    [25]

    Bondar D I, Cabrera R, Lompay R R, Ivanov M Y, Rabitz H A 2012 Phys. Rev. Lett. 109 190403Google Scholar

    [26]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (York: The Maple Press Company) pp151, 280–304

    [27]

    Kim J, Dargush G F, Ju Y K 2013 Int. J. Solids Struct. 50 3418Google Scholar

    [28]

    Riewe F 1996 Phys. Rev. E. 53 1890Google Scholar

    [29]

    林旭升 2002 汕头大学学报(自然科学版) 17 63

    Lin X S 2002 J. Shantou Univ. (Nat. Sci. Ed.) 17 63

    [30]

    张海澜 2012 理论声学(修订版) (北京: 高等教育出版社) 第12页

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p12 (in Chinese)

    [31]

    Zhou P 2015 arXiv: 1512.04487 [physics. gen-ph]

    [32]

    Lindsay G A 1952 Am. J. Phys. 20 86Google Scholar

    [33]

    Courant R, Hilbert D 1953 Methods of Mathematical Physics (Vol. 1) (New York: Interscience) pp208–211

    [34]

    Gelfand I M, Fomin S V 1963 Calculus of Variations (Englewood Cliffs: Prentice-Hall) p42, 71

    [35]

    Zia R K P, Redish E F, McKay S R 2009 Am. J. Phys. 77 614Google Scholar

    [36]

    Ansermet J P, Brechet S 2018 Principles of Thermodynamics (New York: Cambridge University Press) p3

    [37]

    Ruderman M S 2019 Fluid Dynamics and Linear Elasticity-A First Course in Continuum Mechanics (Cham: Springer) pp40, 58, 61–62

    [38]

    Maxwell J C 1867 Phil. Trans. Roy. Soc. London 157 49

    [39]

    Carcione J 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic Porous and Electromagnetic Media (Netherlands: Elsevier) p66

    [40]

    Wang X M, Dodds K, Zhao H B 2006 Explor. Geophys. 37 160Google Scholar

  • 图 1  物理模型示意图

    Fig. 1.  Schematic diagram of physical model.

  • [1]

    Gurtin M E 1964 Arch. Rational Mech. Anal. 16 34Google Scholar

    [2]

    Tiersten H F 1969 Linear Piezoelectric Plate Vibrations (New York: Plenum Press) pp33–35, pp43–46

    [3]

    Achenbach J D 1975 Wave Propagation in Elastic Solids (Netherland: Elsevier) pp51–65

    [4]

    Babich V M, Kiselev A P 2015 Elastic Waves High Frequency Theory (Boca Raton: CRC Press) pp8–10

    [5]

    Shtrikman Z S 1962 J. Mech. Phys. Solids 10 335Google Scholar

    [6]

    张海澜 1985 声学学报 10 223

    Zhang H L 1985 Acta Acustica 10 223

    [7]

    Shen H C, Li S M 2006 Classical Mechanics (Hefei: University of Science and Technology of China Press) pp233, 240 (in Chinese) [沈惠川, 李书明 2006 经典力学(合肥: 中国科学技术大学出版社) 第233, 240页

    [8]

    EerNisse E P, Holland R 1967 Proceedings of the IEEE p1524

    [9]

    Luan P 2018 J. Phys. Commun. 2 075016Google Scholar

    [10]

    Civelek C, Bechteler T F 2008 Int. J. Eng. Sci. 46 1218Google Scholar

    [11]

    Luan P 2020 Crystals 10 863Google Scholar

    [12]

    Gueorguiev V G, Maeder A 2021 Symmetry 13 522Google Scholar

    [13]

    Moiseiwitsch B L 2004 Variational Principles (New York: Dover Publications) pp82–83

    [14]

    Cline D 2019 Variational Principles in Classic Mechanics (Rochester: University of Rochester) pp181–184, 443

    [15]

    唐立民 1991 计算结构力学及其应用 8 343Google Scholar

    Tang L M 1991 Chin. J. Comput. Mech. 8 343Google Scholar

    [16]

    Landau L D, Lifshitz E M 1976 Mechanics (Oxford: Butterworth-Heinemann) p14, 131

    [17]

    Lanczos C 1986 The Variational Principles of Mechanics (4th Ed.) (New York: Dover) pp120–122

    [18]

    Arnold I V 1997 Mathematical Methods of Classical Mechanics (2nd Ed.) (New York: Springer) pp59–60

    [19]

    Goldstein H, Poole C P, Safko J L 2013 Classical Mechanics (3rd Ed.) (Essex: Pearson Education Limited) p35

    [20]

    Morita S 2016 World J. Mech. 6 84Google Scholar

    [21]

    Huang Y C 2003 Mech. Res. Commun. 30 567Google Scholar

    [22]

    黄永畅 2005 物理学报 54 3473Google Scholar

    Huang Y C 2005 Acta. Phys. Sin. 54 3473Google Scholar

    [23]

    Huang Y C, Lee X G, Shao M X 2006 Mod. Phys. Lett. A 21 1107Google Scholar

    [24]

    Huang C and Huang Y C 2020 doi: 10.20944/preprints202008.0334.v3

    [25]

    Bondar D I, Cabrera R, Lompay R R, Ivanov M Y, Rabitz H A 2012 Phys. Rev. Lett. 109 190403Google Scholar

    [26]

    Morse P M, Feshbach H 1953 Methods of Theoretical Physics (York: The Maple Press Company) pp151, 280–304

    [27]

    Kim J, Dargush G F, Ju Y K 2013 Int. J. Solids Struct. 50 3418Google Scholar

    [28]

    Riewe F 1996 Phys. Rev. E. 53 1890Google Scholar

    [29]

    林旭升 2002 汕头大学学报(自然科学版) 17 63

    Lin X S 2002 J. Shantou Univ. (Nat. Sci. Ed.) 17 63

    [30]

    张海澜 2012 理论声学(修订版) (北京: 高等教育出版社) 第12页

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p12 (in Chinese)

    [31]

    Zhou P 2015 arXiv: 1512.04487 [physics. gen-ph]

    [32]

    Lindsay G A 1952 Am. J. Phys. 20 86Google Scholar

    [33]

    Courant R, Hilbert D 1953 Methods of Mathematical Physics (Vol. 1) (New York: Interscience) pp208–211

    [34]

    Gelfand I M, Fomin S V 1963 Calculus of Variations (Englewood Cliffs: Prentice-Hall) p42, 71

    [35]

    Zia R K P, Redish E F, McKay S R 2009 Am. J. Phys. 77 614Google Scholar

    [36]

    Ansermet J P, Brechet S 2018 Principles of Thermodynamics (New York: Cambridge University Press) p3

    [37]

    Ruderman M S 2019 Fluid Dynamics and Linear Elasticity-A First Course in Continuum Mechanics (Cham: Springer) pp40, 58, 61–62

    [38]

    Maxwell J C 1867 Phil. Trans. Roy. Soc. London 157 49

    [39]

    Carcione J 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic Porous and Electromagnetic Media (Netherlands: Elsevier) p66

    [40]

    Wang X M, Dodds K, Zhao H B 2006 Explor. Geophys. 37 160Google Scholar

  • [1] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究. 物理学报, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [2] 张荣培, 王迪, 蔚喜军, 温学兵. 基于广义交替数值通量的局部间断Galerkin方法求解二维波动方程. 物理学报, 2020, 69(2): 020202. doi: 10.7498/aps.69.20190613
    [3] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [4] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解. 物理学报, 2013, 62(4): 040203. doi: 10.7498/aps.62.040203
    [5] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法. 物理学报, 2013, 62(4): 044601. doi: 10.7498/aps.62.044601
    [6] 曹小群, 宋君强, 张卫民, 朱小谦, 赵军. Boussinesq方程组的广义变分原理. 物理学报, 2011, 60(8): 080401. doi: 10.7498/aps.60.080401
    [7] 贾利群, 张耀宇, 杨新芳, 崔金超, 解银丽. Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量. 物理学报, 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [8] 张丽春, 赵仁. Kerr-Newman-de Sitter黑洞辐射谱和熵修正. 物理学报, 2010, 59(4): 2217-2222. doi: 10.7498/aps.59.2217
    [9] 赵仁, 张丽春, 李怀繁. Kerr-Newman黑洞的辐射谱. 物理学报, 2010, 59(5): 2982-2986. doi: 10.7498/aps.59.2982
    [10] 宋柏, 吴晶, 过增元. 基于热质理论的Hamilton原理. 物理学报, 2010, 59(10): 7129-7134. doi: 10.7498/aps.59.7129
    [11] 胡双启, 张丽春, 赵仁. Schwarzschild-de Sitter黑洞的Hawking辐射. 物理学报, 2009, 58(10): 6798-6801. doi: 10.7498/aps.58.6798
    [12] 任继荣, 朱辉. 计算光在引力场中偏折的新方法. 物理学报, 2009, 58(1): 690-694. doi: 10.7498/aps.58.690
    [13] 丁光涛. 经典力学中加速度相关的Lagrange函数. 物理学报, 2009, 58(6): 3620-3624. doi: 10.7498/aps.58.3620
    [14] 赵 仁, 张丽春, 李怀繁. 黑洞的Hawking辐射. 物理学报, 2008, 57(12): 7463-7466. doi: 10.7498/aps.57.7463
    [15] 孟庆苗, 苏九清, 蒋继建. 带有整体磁单极子的Barriola-Vilenkin黑洞时空中静质量不为零的粒子的量子隧穿辐射. 物理学报, 2007, 56(7): 3723-3726. doi: 10.7498/aps.56.3723
    [16] 李慧玲, 蒋青权, 杨树政. Reissner-Nordstr?m de Sitter黑洞的量子隧穿效应. 物理学报, 2006, 55(2): 539-542. doi: 10.7498/aps.55.539
    [17] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理. 物理学报, 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [18] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射. 物理学报, 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [19] 马善钧, 徐学翔, 黄沛天, 胡利云. 完整系统三阶Lagrange方程的一种推导与讨论. 物理学报, 2004, 53(11): 3648-3651. doi: 10.7498/aps.53.3648
    [20] 方建会. 转动变质量系统的相对论性动力学方程和变分原理. 物理学报, 2000, 49(6): 1028-1030. doi: 10.7498/aps.49.1028
计量
  • 文章访问数:  5806
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-02-06
  • 上网日期:  2023-03-18
  • 刊出日期:  2023-04-05

/

返回文章
返回