-
运用Damour-Ruffini方法研究Kerr-Newman黑洞粒子的Hawking辐射.在保持时空中总能量,总角动量和总电荷守恒的条件下,考虑辐射粒子对时空的反作用后,得到黑洞辐射谱不再是严格的纯热谱. 在该结论中,不但含有辐射粒子能量的影响项,而且含有辐射粒子角动量对黑洞角动量的影响项. 所给表达式与用隧穿方法得到的表达式一致.满足量子力学的幺正性原理.
-
关键词:
- Damour-Ruffini方法 /
- Hawking辐射 /
- 能量守恒 /
- 角动量守恒
Taking into consideration the radiation particle retroaction with the total energy, angular momentum and charge of spacetime conservation, using the Damour-Ruffini method, the Hawking radiation of particle from Kerr-Newman black hole are re-investigated. It is found that the Hawking radiation is not exactly pure thermal. Our conclusion not only contains the impact for the energy of the radiation particle, but also contains the impact for the angular momentum of particle to the angular momentum of black hole. The result is consistent with the works of Parikh and Wilczek, and satisfies the unitary theory of quantum mechanics.-
Keywords:
- Damour-Ruffini method /
- Hawking radiation /
- energy conservation /
- angular momentum conservation
[1] [1]Hawking S W 1975 Commun. Math. Phys. 43 199
[2] [2]Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752
[3] [3]Hawking S W, Penrose R 1996 The Nature of Space and Time (Princeton. Princeton University Press)
[4] [4]Thorne K 1994 Black Hole and Time Warps (New York. Norton Company)
[5] [5]Hawking S W 2005 Phys. Rev. D 72 084013
[6] Hawking S W 2002 Hawking’s talk at 17th International Conference on General Relativity and Gravition in Dublin. ArXiv: hep-th/0204107
[7] [6]Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
[8] [7]Kerner R, Mann R B 2006 Phys. Rev. D 73 104010
[9] [8]Cai R G, Cao L M, Hu Y P 2008 Class. Quant. Grav. 26 155018
[10] [9]Banerjee R, Majhi B R 2008 JHEP 06 095
[11] Banerjee R, Majhi B R 2008 Phys. Lett. B 662 62
[12] ]Kerner R, Mann R B 2007 Phys. Rev. D 75 084022
[13] ]Kerner R, Mann R B 2008 Phys. Lett. B 665 277
[14] ]Zhao R, Li H F, Hu S Q 2007 Chinese Journal of Physics. 45 32
[15] ]Arzano M, Medved A J M, Vagenas E C 2005 JHEP 09 037
[16] ]Zhang J Y, Zhao Z 2005 Phys. Lett. B 618 14
[17] ]Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029
[18] ]Zhang J Y, Fan J H 2007 Phys. Lett. B 648 133
[19] ]Li R, Ren J R 2008 Phys. Lett. B 661 370
[20] ]Peng J J, Wu S Q 2008 Phys. Lett. B 661 300
[21] ]Li H L, Jiang Q Q, Yang S Z 2006 Acta Phys. Sin. 55 539 (in Chinese) [李慧玲、蒋青权、 杨树政 2006 物理学报 55 539]
[22] ]Zhang J Y,Zhao Z 2006 Acta Phys. Sin. 55 3796 (in Chinese) [张靖仪、赵峥 2006 物理学报 55 3796]
[23] ]Jiang Q Q, Wu S Q, Cai X 2007 Acta Phys. Sin. 56 3083 (in Chinese) [蒋青权、吴双清、蔡勖2007物理学报 56 3083]
[24] ]Liu W B 2007 Acta Phys. Sin. 56 6164 (in Chinese) [刘文彪 2007 物理学报 56 6164]
[25] ]He X K, Liu W B 2007 Phys. Lett. B 653 330
[26] ]Zhou S W, Liu W B 2008 Phys. Rev. D 77 104021
[27] ]Damour T, Ruffini R 1976 Phys. Rev. D 14 332
[28] ]Sannan S 1988 Gen. Rel. Grav. 20 239
[29] ]Vagenas E C 2008 JHEP 0811 073
[30] ]Medved A J M 2008 Class. Quant. Grav. 25 205014[29]Wu S Q, Cai X 2000 Int. J. Theor. Phys. 39 2215
[31] ]Wu S Q, Cai X 2000 IL Nuovo Cimento B 115 143
[32] ]Bardeen J M, Carter B, Hawking S W 1973 Commun. Math. Phys. 31 161
[33] ]Wald R M 1984 General Relativity (Chicago and London: the university of Chicago press)
-
[1] [1]Hawking S W 1975 Commun. Math. Phys. 43 199
[2] [2]Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752
[3] [3]Hawking S W, Penrose R 1996 The Nature of Space and Time (Princeton. Princeton University Press)
[4] [4]Thorne K 1994 Black Hole and Time Warps (New York. Norton Company)
[5] [5]Hawking S W 2005 Phys. Rev. D 72 084013
[6] Hawking S W 2002 Hawking’s talk at 17th International Conference on General Relativity and Gravition in Dublin. ArXiv: hep-th/0204107
[7] [6]Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
[8] [7]Kerner R, Mann R B 2006 Phys. Rev. D 73 104010
[9] [8]Cai R G, Cao L M, Hu Y P 2008 Class. Quant. Grav. 26 155018
[10] [9]Banerjee R, Majhi B R 2008 JHEP 06 095
[11] Banerjee R, Majhi B R 2008 Phys. Lett. B 662 62
[12] ]Kerner R, Mann R B 2007 Phys. Rev. D 75 084022
[13] ]Kerner R, Mann R B 2008 Phys. Lett. B 665 277
[14] ]Zhao R, Li H F, Hu S Q 2007 Chinese Journal of Physics. 45 32
[15] ]Arzano M, Medved A J M, Vagenas E C 2005 JHEP 09 037
[16] ]Zhang J Y, Zhao Z 2005 Phys. Lett. B 618 14
[17] ]Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029
[18] ]Zhang J Y, Fan J H 2007 Phys. Lett. B 648 133
[19] ]Li R, Ren J R 2008 Phys. Lett. B 661 370
[20] ]Peng J J, Wu S Q 2008 Phys. Lett. B 661 300
[21] ]Li H L, Jiang Q Q, Yang S Z 2006 Acta Phys. Sin. 55 539 (in Chinese) [李慧玲、蒋青权、 杨树政 2006 物理学报 55 539]
[22] ]Zhang J Y,Zhao Z 2006 Acta Phys. Sin. 55 3796 (in Chinese) [张靖仪、赵峥 2006 物理学报 55 3796]
[23] ]Jiang Q Q, Wu S Q, Cai X 2007 Acta Phys. Sin. 56 3083 (in Chinese) [蒋青权、吴双清、蔡勖2007物理学报 56 3083]
[24] ]Liu W B 2007 Acta Phys. Sin. 56 6164 (in Chinese) [刘文彪 2007 物理学报 56 6164]
[25] ]He X K, Liu W B 2007 Phys. Lett. B 653 330
[26] ]Zhou S W, Liu W B 2008 Phys. Rev. D 77 104021
[27] ]Damour T, Ruffini R 1976 Phys. Rev. D 14 332
[28] ]Sannan S 1988 Gen. Rel. Grav. 20 239
[29] ]Vagenas E C 2008 JHEP 0811 073
[30] ]Medved A J M 2008 Class. Quant. Grav. 25 205014[29]Wu S Q, Cai X 2000 Int. J. Theor. Phys. 39 2215
[31] ]Wu S Q, Cai X 2000 IL Nuovo Cimento B 115 143
[32] ]Bardeen J M, Carter B, Hawking S W 1973 Commun. Math. Phys. 31 161
[33] ]Wald R M 1984 General Relativity (Chicago and London: the university of Chicago press)
计量
- 文章访问数: 9539
- PDF下载量: 706
- 被引次数: 0