Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Maximum ceasing angle of inclination andflux formula for granular orifice flow in water

Xie Wen-Tao Li Ruo-Ru Peng Zheng Jiang Yi-Min

Citation:

Maximum ceasing angle of inclination andflux formula for granular orifice flow in water

Xie Wen-Tao, Li Ruo-Ru, Peng Zheng, Jiang Yi-Min
PDF
HTML
Get Citation
  • In previous work [Acta Phys. Sin. 60 054501 (2011)], we found that for inclined Granular Orifice Flow (GOF) in air, regardless of the orifice size, the flow rate Q had a good linear relationship with the cosine of the inclination $\cos \theta $, i.e. $\dfrac{Q}{{{Q_0}}} = 1 - \dfrac{{\cos \theta - 1}}{{\cos {\theta _{\rm c}} - 1}}$, where Q0 is flow rate at $\theta ={0^ \circ }$, and ${\theta _{\rm c}}$ is the critical angle of flow ceasing obtained by linear extrapolation. Moreover, ${\theta _{\rm c}}$ increased linearly with ratio between grain and orifice diameter d/D, and at the limit of d/D going to zero (that is, D going to infinity), the angle of repose of the sample ${\theta _{\rm r}}~( = 180^ \circ - \theta _{\rm c\infty})$ was obtained. Since the flow of GOF is very stable, we believe that the linear extrapolation of the above-mentioned inclined GOF provides a novel method for accurately measuring the angle of repose of granular materials. This method has been proved to be effective in a wider orifice size range by another work [Acta Phys. Sin. 65 084502 (2016)]; and three angles, namely the repose angle measured by GOF, the free accumulation angle of a sandpile and the internal friction angle of the granular material measured by Coulomb yielding, are confirmed to be consistent. In this work, we extend this method to underwater, measuring the mass flow rate of a granular sample (glass beads) which completely immersed in water and driven by gravity, discharged from an inclined orifice for various inclination angles and orifice diameters. It is found that similar to the case in air, regardless of the orifice size, the flow rate increase linearly with the cosine of the inclination; the critical angle of flow ceasing increases linearly with ratio between grain and orifice diameter; at the limit of infinite orifice, this critical angle is consistent with the repose angle of the underwater sample within the experimental error range. In addition, all measurements can be well fitted by using the Beverloo formula $Q = {C_0}\rho {g^{1/2}}{(D - kd)^{5/2}}$, where the parameters C0 and k are only related to the cosine of the inclination, and are linear and inversely squared, respectively. Compared with the results of GOF in air reported by previous work, it is found that the difference mainly comes from the influence of buoyancy and fluid drag forces on the parameter C0. These results show that both the method of measuring angle of repose with the inclined GOF and the Beverloo formula have certain universality. The behavior of GOF is qualitatively the same whether the interstitial fluid is water or air.
      Corresponding author: Peng Zheng, zpeng@csu.edu.cn
    [1]

    Nedderman R M1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) pp292–294

    [2]

    陆坤权, 刘寄星 2004 物理 33 713Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 713Google Scholar

    [3]

    Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260Google Scholar

    [4]

    Tian Y, Lin P, Zhang S, Wang C L, Wan J F, Yang L 2015 Adv. Powder Technol. 26 1191Google Scholar

    [5]

    Lin P, Zhang S, Qi J, Xing Y M, Yang L 2015 PhysicaA 417 29Google Scholar

    [6]

    Zhang S, Lin P, Yang G, Wan J F, Tian Y, Yang L 2019 Chin. Phys. B 28 018101Google Scholar

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002Google Scholar

    [8]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [9]

    van Zuilichem D J, van Egmond N D, DeSwart J G 1974 Powder Technol. 10 161Google Scholar

    [10]

    Peng Z, Zheng H P, Jiang Y M 2009 arXiv: 0908.0258 v3 [cond-mat.soft]

    [11]

    Madrid M A, Darias J R, Pugnaloni L A 2018 EPL 123 14004Google Scholar

    [12]

    Ji S Y, Wang S Q, Peng Z 2019 Powder Technol. 356 702Google Scholar

    [13]

    Sheldon H G, Durian D J 2010 Granul. Matter 12 579Google Scholar

    [14]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [15]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201Google Scholar

    [16]

    彭政, 蒋亦民 2011 物理学报 60 054501Google Scholar

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2016 物理学报 65 084502Google Scholar

    Zhang Y, Wei YF, Peng Z, Jiang YM, Duan WS, Hou MY 2016 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Wilson T J, Pfeifer C R, Mesyngier N, Durian D J 2014 Pap. Phys. 6 060009

    [19]

    Koivisto J, Durian D J 2017 Nature Comm. 8 15551Google Scholar

    [20]

    Hu W R, Zhao J F, Long M, Zhang X W, Liu Q S, Hou M Y, Kang Q, Wang Y R, Xu S H, Kong W J, Zhang H, Wang S F, Sun Y Q, Hang H Y, Huang Y P, Cai W M, Zhao Y, Dai J W, Zheng H Q, Duan E K, Wang J F 2014 Microgravity Sci. Technol. 26 159Google Scholar

    [21]

    Cheng X H, Xiao S Z, Cao A S, Hou M Y 2019 Granul. Matter 21 104Google Scholar

    [22]

    Kobayashi T, Ochiai H, Suyama Y, Aoki S, Yasufuku N, Omine K 2009 Soils Found. 49 115Google Scholar

  • 图 1  (a)实验装置示意图; (b)料仓透水侧壁照片; (c)倾角小于45度时采用的实验装置; (d)倾角大于45度时采用的实验装置; (e)楔形孔洞示意图

    Figure 1.  (a) Schematic of the setup; (b) photograph of the permeable side wall of the silo; (c) the experimental devices used when the inclination is less than 45 degrees; (d) the experimental devices used when the inclination is greater than 45 degrees; (e) schematic of the wedge-shaped orifice D.

    图 2  $D = 14$ mm, $\theta = 90^\circ $ 时典型的$M(t)$数据; 左下和右上插图分别为从主图中摘出的40−80 s及80−120 s的$M(t)$数据, 均呈良好的线性关系. 由这两段数据计算得到的流量$Q$没有差别, 均为6.53 g/s, 表明流量非常稳定

    Figure 2.  Typical data of M(t) at D = 14 mm, $\theta = 90^\circ $;the lower left and upper right insets are the data of 40−80 s and 80−120 s extracted from the main graph, both of which show good linearity. Both flow rates$Q$ calculated from these two insets are 6.53 g/s, indicating that the flow is very stable.

    图 3  (a)不同孔径D下流量Q随倾角余弦$\cos \theta $ 的变化, 实线为直线拟合; (b)用水平($\theta = {0^\circ }$)流量${Q_0}$ 归一化的流量$Q/{Q_0}$ 随倾角余弦$\cos \theta $ 的变化关系, 实线为公式(3)的拟合结果; (c)临界流量休止角${\theta _{\rm{c}}}$随粒径-孔径比d/D的变化关系, 实线和${\theta _0}$为直线拟合结果

    Figure 3.  (a) The variation of flow rateQ with the inclination cosine $\cos \theta $ at different orifices D, where the solid line is a linear fit; (b) variation of the normalized flow rate $Q/{Q_0}$ with $\cos \theta $, where ${Q_0}$ is the rate at $\theta = {0^ \circ }$, and the solid line is the fitted result of equation (3); (c) the relationship between the critical angle of flow ceasing ${\theta _{\rm{c}}}$ and the ratio d/D, where the solid line and ${\theta _0}$ are results of linear fitting.

    图 4  (a)用Beverloo公式(1)和(2)拟合图3数据的结果, 插图为不同倾角时${Q^{2/5}}$D的变化关系, 实线为线性拟合; (b), (c)Beverloo参数${C_0}$$k$$\cos \theta $ 的变化关系, 及其用公式(2)的拟合情况. 图(c)中的插图是${k^{ - 2}}$$\cos \theta $的变化关系

    Figure 4.  (a) Results of fitting the data in Figure 3 using the Beverloo formula (1) and (2), the inset is the change of ${Q^{2/5}}$ with D at different inclination, and the solid line is a linear fit; (b) and (c) variations of the parameters ${C_0}$ and $k$ with $\cos \theta $, and solid lines are results of fits by using equation (2). The inset in (c) is the change of ${k^{ - 2}}$ with $\cos \theta $.

    图 5  (a)和(b)是水中(实心方点)和空气中(空心圆点)GOF的Beverloo参数${C_0}$k$\cos \theta $的变化; (c)−(f)分别为$\theta = {0^ \circ }, {60^ \circ }, {90^ \circ }, {120^ \circ }$时, 水中和空气中GOF流量QD的变化, 插图是$Q/{C_0}$D的变化. 空气中的实验数据来自文献[16]

    Figure 5.  (a) and (b): Beverloo parameters ${C_0}$ and $k$ of GOF in water (solid squares) and in air (hollow circles) as a function of $\cos \theta $; (c)−(f): the changes of GOF flow rate Q with D in water and in air when $\theta = {0^ \circ }, {60^ \circ }, {90^ \circ }, {120^ \circ }$, respectively, and the inset is the change of $Q/{C_0}$ with D. The experimental data in air comes from ref. [16].

    图 6  水和文献[16]空气的(a) Beverloo系数${C_0}$和(b) GOF流量$Q$的比值

    Figure 6.  Ratio of (a) Beverloo coefficient ${C_0}$ and (b) GOF flow rate Q in water and in air (from Ref. [16])

  • [1]

    Nedderman R M1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) pp292–294

    [2]

    陆坤权, 刘寄星 2004 物理 33 713Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 713Google Scholar

    [3]

    Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260Google Scholar

    [4]

    Tian Y, Lin P, Zhang S, Wang C L, Wan J F, Yang L 2015 Adv. Powder Technol. 26 1191Google Scholar

    [5]

    Lin P, Zhang S, Qi J, Xing Y M, Yang L 2015 PhysicaA 417 29Google Scholar

    [6]

    Zhang S, Lin P, Yang G, Wan J F, Tian Y, Yang L 2019 Chin. Phys. B 28 018101Google Scholar

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002Google Scholar

    [8]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [9]

    van Zuilichem D J, van Egmond N D, DeSwart J G 1974 Powder Technol. 10 161Google Scholar

    [10]

    Peng Z, Zheng H P, Jiang Y M 2009 arXiv: 0908.0258 v3 [cond-mat.soft]

    [11]

    Madrid M A, Darias J R, Pugnaloni L A 2018 EPL 123 14004Google Scholar

    [12]

    Ji S Y, Wang S Q, Peng Z 2019 Powder Technol. 356 702Google Scholar

    [13]

    Sheldon H G, Durian D J 2010 Granul. Matter 12 579Google Scholar

    [14]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [15]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201Google Scholar

    [16]

    彭政, 蒋亦民 2011 物理学报 60 054501Google Scholar

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2016 物理学报 65 084502Google Scholar

    Zhang Y, Wei YF, Peng Z, Jiang YM, Duan WS, Hou MY 2016 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Wilson T J, Pfeifer C R, Mesyngier N, Durian D J 2014 Pap. Phys. 6 060009

    [19]

    Koivisto J, Durian D J 2017 Nature Comm. 8 15551Google Scholar

    [20]

    Hu W R, Zhao J F, Long M, Zhang X W, Liu Q S, Hou M Y, Kang Q, Wang Y R, Xu S H, Kong W J, Zhang H, Wang S F, Sun Y Q, Hang H Y, Huang Y P, Cai W M, Zhao Y, Dai J W, Zheng H Q, Duan E K, Wang J F 2014 Microgravity Sci. Technol. 26 159Google Scholar

    [21]

    Cheng X H, Xiao S Z, Cao A S, Hou M Y 2019 Granul. Matter 21 104Google Scholar

    [22]

    Kobayashi T, Ochiai H, Suyama Y, Aoki S, Yasufuku N, Omine K 2009 Soils Found. 49 115Google Scholar

  • [1] Cheng Qi, Ran Xian-Wen, Liu Ping, Tang Wen-Hui, Raphael Blumenfeld. Numerical simulation of a spinning sphere moving in granular matter. Acta Physica Sinica, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [2] Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [3] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [4] Zhang Yu, Wei Yan-Fang, Peng Zheng, Jiang Yi-Min, Duan Wen-Shan, Hou Mei-Ying. Inclined glass-sand flow and the angle of repose. Acta Physica Sinica, 2016, 65(8): 084502. doi: 10.7498/aps.65.084502
    [5] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [6] Peng Zheng, Jiang Yi-Min, Liu Rui, Hou Mei-Ying. Energy dissipation of a granular system under vertical vibration. Acta Physica Sinica, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [7] Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song. Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters. Acta Physica Sinica, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [8] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [9] Bi Zhong-Wei, Sun Qi-Cheng, Liu Jian-Guo, Jin Feng, Zhang Chu-Han. Development of shear band in a granular material in biaxial tests. Acta Physica Sinica, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [10] Peng Zheng, Jiang Yi-Min. Maximum ceasing angle of inclination and flux formula for granular orifice flow. Acta Physica Sinica, 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [11] Huang De-Cai, Hu Feng-Lan, Deng Kai-Ming, Wu Hai-Ping. Effect of opening angle on dilute-dense flow transition in two-dimensional granular flow. Acta Physica Sinica, 2010, 59(11): 8249-8254. doi: 10.7498/aps.59.8249
    [12] Jiang Ze-Hui, Jing Ya-Fang, Zhao Hai-Fa, Zheng Rui-Hua. Effects of subharmonic motion on size segregation in vertically vibrated granular materials. Acta Physica Sinica, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [13] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [14] Bao De-Song, Lei Zhe-Min, Hu Guo-Qi, Zhang Xun-Sheng, Tang Xiao-Wei. The effect of opening-angle at choke point on the two-dimensional granular flow on a conveyor belt. Acta Physica Sinica, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [15] Du Xue-Neng, Hu Lin, Kong Wei-Shu, Wang Wei-Ming, Wu Yu. On the nonlinear oscillation of internal sliding friction in particulate matter. Acta Physica Sinica, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [16] Zhong Jie, Peng Zheng, Wu Yao-Yu, Shi Qing-Fan, Lu Kun-Quan, Hou Mei-Ying. The critical phenomena of the dilute-to-dense transition in two-dimensional granular flow. Acta Physica Sinica, 2006, 55(12): 6691-6696. doi: 10.7498/aps.55.6691
    [17] Bao De-Song, Zhou Ying, Zhang Xun-Sheng, Tang Xiao-Wei. The effect of channel width on the distribution of two-dimensional granular flow in an inclined channel. Acta Physica Sinica, 2005, 54(2): 798-801. doi: 10.7498/aps.54.798
    [18] Zhou Ying, Bao De-Song, Zhang Xun-Sheng, Lei Zhe-Min, Hu Guo-Qi, Tang Xiao-Wei. Effect of boundary on the two-dimensional inclined channel for a dilute granular flow distribution. Acta Physica Sinica, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [19] Hu Lin, Yang Ping, Xu Ting, Jiang Yang, Xu Hai-Jiang, Long Wei, Yang Chang-Shun, Zhang Tao, Lu Kun-Quan. The static friction force on a rod immersed in granular matter. Acta Physica Sinica, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] Xu Guang-Lei, Hu Guo-Qi, Zhang Xun-Sheng, Bao De-Song, Chen Wei, Hou Mei-Ying, Lu Kun-Quan. The influence of channel width and inflow rate on the critical opening-size of granular flow in two-dimensional channels. Acta Physica Sinica, 2003, 52(4): 875-878. doi: 10.7498/aps.52.875
Metrics
  • Abstract views:  8037
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2020
  • Accepted Date:  09 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回