Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Blood pressure estimation based on heart sound signals

Cheng Xie-Feng Dai Shi-Cheng Zhao Peng-Jun

Citation:

Blood pressure estimation based on heart sound signals

Cheng Xie-Feng, Dai Shi-Cheng, Zhao Peng-Jun
PDF
HTML
Get Citation
  • Cardiovascular disease, especially hypertension, has become one of the biggest killers of human life and health. Therefore, early detection and prevention of cardiovascular diseases are of great significance for people’s health. In this paper, we explore the relationship between aortic valve heart sound signal and blood pressure, and propose a method of non-invasively estimating blood pressure based on heart sound signals. First, according to the relationship between blood pressure and the heart sound signal, both the time interval between the peak point of the first heart sound and that of the second heart sound and the kurtosis of the second heart sound are extracted as features. Then the time interval between the first heart sound and the second heart sound, and the kurtosis of the second heart sound are linearly fitted to the measured blood pressure. Finally, according to the linear relationship between heart sound and blood pressure, a blood pressure evaluation formula based on the heart sound is established. The experimental results show that the time interval between the peak point of the first heart sound and that of the second heart sound, and the kurtosis of the second heart sound can be used as the characteristic parameters of blood pressure evaluation, which have a good linear relationship with blood pressure. The goodness of fit is 0.801 and 0.765, separately. The average error between the blood pressure calculated from the blood pressure calculation formula and the blood pressure measured by a commercial electronic sphygmomanometer is less than 5 mmHg, and the standard deviation is less than 8 mmHg. For hypertensive patients, the time interval between the peak point of the first heart sound and the second heart sound is shortened, and the kurtosis of the second heart sound is increased, which is a typical feature of heart sounds in patients with hypertension. Compared with the traditional blood pressure calculation method, the blood pressure assessment method proposed in this paper only needs to collect heart sound signals to effectively assess the blood pressure. The method is convenient to operate and can be used for continuously monitoring the blood pressure, and is especially suitable for monitoring the blood pressures of infants, disabled patients with limbs, and disabilities in certain medical environments.
      Corresponding author: Dai Shi-Cheng, dennisdsc@163.com
    [1]

    WHO NCD Mortality and Morbidity http://www.who.int/gho/ncd/mortality_morbidity/en/ [2015−09−07]

    [2]

    Durand L G, Pibarot P 1995 Crit. Rev. Biomed. Eng. 23 163Google Scholar

    [3]

    Liu C C, Springer D B, Clifford G D 2017 Physiol. Meas. 38 1730Google Scholar

    [4]

    Bartels A, Harder D 1992 Clin. Phys. Physiol. Meas. 13 249Google Scholar

    [5]

    Tanigawa N, Smith D, Craige E 1991 Jpn. Circ. J. 55 737Google Scholar

    [6]

    Zhang X Y, Zhang Y T 2006 Proceedings of the IEEE Engineering in Medicine and Biology Society New York, USA, August 30−September 3, 2006 p2888

    [7]

    Peng R C, Yan W R, Zhang N L, Lin W H, Zhou X L, Zhang Y T 2015 Sensors-basel 15 23653Google Scholar

    [8]

    Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C 2008 Cardiovasc. Ultrasoun. 6 41Google Scholar

    [9]

    Tao Y W CN104510491A [2015−04−15]

    [10]

    黄正钦 2014 硕士学位论文 (昆明: 云南大学)

    Huang Z Q 2014 M. S. Thesis (Kunming: Yunnan University) (in Chinese)

    [11]

    Shriram R, Wakankar A, Daimiwal N 2010 Proceedings of International Conference on Bioinformatics and Biomedical Technology Chengdu, China, April 16−18, 2010 p100971242

    [12]

    Landowne M 1957 Circ. Res. 5 594Google Scholar

    [13]

    Payne R A, Symeonides C N, Webb D J, Maxwell S R J 2006 J. Appl. Physiol. 100 136Google Scholar

    [14]

    蔡任圃 2012 科学月刊 507 236

    Cai R P 2012 Science Monthly 507 236

    [15]

    周静, 杨永明, 何为 2005 中国生物医学工程学报 24 685Google Scholar

    Zhou J, Yang Y M, He W 2005 Chin. J. Biomed. Eng. 24 685Google Scholar

    [16]

    Ding X R, Zhao R, Yang G Z, Pettigrew R 2016 IEEE J. Biomed. Health 20 1Google Scholar

    [17]

    Lim K H, Shin Y D, Park S H, Bae J H, Lee H J, Kim S J 2013 Pak. J. Med. Sci. 29 1023

  • 图 1  心音信号采集位置和采集装置示意图 (a) 心脏听诊区位置; (b) Ω型肩戴式无线心音采集装置

    Figure 1.  Heart sound signal acquisition position and acquisition device: (a) Heart auscultation area location; (b) shoulder-mounted wireless heart sound acquisition device of Ω shape.

    图 2  第一心音和第二心音标定效果示意图 (a) 包络图; (b) 峰值定位图

    Figure 2.  Calibration effect diagram of the first heart sound and the second heart sound: (a) Envelope; (b) peak location.

    图 3  心音信号、脉搏波信号和心电信号时程关系图 (a)心音信号; (b) 脉搏波信号; (c) 心电信号

    Figure 3.  Heart sound signal, pulse wave signal, and ECG signal time diagram: (a) Heart sound signal; (b) pulse wave signal; (c) ECG signal.

    图 4  测试者HSTT(均值)与血压(均值)拟合结果 (a) 静止状态; (b) 运动状态; (c) 运动后恢复状态

    Figure 4.  Fitting results of HSTT (mean) and blood pressure (mean): (a) Stationary state; (b) exercise state; (c) recovery state after exercise.

    图 5  测试者K (均值)与血压(均值)拟合结果 (a) 静止状态; (b) 运动状态; (c) 运动后恢复状态

    Figure 5.  Fitting results of K (mean) and blood pressure (mean): (a) Stationary state; (b) exercise state; (c) recovery state after exercise

    图 6  第5组测试者血压实测值(均值)和评估值(均值)对比图 (a) 静止状态; (b) 运动状态; (c) 运动后恢复状态

    Figure 6.  Comparison of measured blood pressure (mean) and evaluation (mean) of blood pressure in the test subjects of the 5th group: (a) Stationary state; (b) exercise state; (c) recovery state after exercise

    图 7  35名测试者血压实测值(均值)和评估值(均值)对比 (a) CC; (b) MAE; (c) ME; (d) SD

    Figure 7.  Comparison of measured blood pressure (mean) and evaluation values (mean) of 35 subjects: (a) Pearson correlation coefficient CC; (b) mean absolute error MAE; (c) mean error ME; (d) standard deviation SD.

    表 1  编号5-2测试者第二心音峰值点与脉搏波峰值点在时间上的对应关系

    Table 1.  Correspondence between the peak point of the second heart sound and pulse wave of No. 5-2 subject.

    信号类型时间/ms
    第二心音
    峰值点
    2059761722248132333956469754466184
    脉搏波
    峰值点
    2099821727248632383960470454546189
    DownLoad: CSV

    表 2  HSTT与血压拟合优度

    Table 2.  Goodness of fit between HSTT and BP.

    状态SBPDBP均值
    静止0.8470.7740.801
    运动0.8260.753
    运动后恢复0.8390.768
    DownLoad: CSV

    表 3  第二心音峭度(K )与血压拟合优度

    Table 3.  The second heart sound kurtosis (K ) and goodness of fit of blood pressure.

    状态SBPDBP均值
    静止0.8240.7030.765
    运动0.8180.724
    运动后恢复0.8060.718
    DownLoad: CSV

    表 4  第5组测试者3种状态下心音与血压相关数据统计结果(均值)

    Table 4.  Data related to heart sounds and blood pressure in the 5th group.

    测试者状态HSTT/msK计算${\rm{SBP}}$/mmHg实测${\rm{SBP}}$/mmHg计算${\rm{DBP}}$/mmHg实测${\rm{DBP}}$/mmHg
    静止277.93.31120.28122.671.8671.2
    运动246.74.19139.00140.284.3483.0
    运动后恢复264.33.72128.43128.877.2975.8
    DownLoad: CSV

    表 5  所有测试者数据参数统计结果

    Table 5.  Data parameter statistics of all sujects.

    参数最大值最小值平均值
    ${{\rm{CC}}_{\rm{SBP}}}$0.9230.5420.781
    ${{\rm{CC}}_{\rm{DBP}}}$0.8910.5150.748
    ${{\rm{MAE}}_{\rm{SBP}}}$/mmHg6.2451.0542.712
    ${{\rm{MAE}}_{\rm{DBP}}}$/mmHg5.9681.6283.264
    ${{\rm{ME}}_{\rm{SBP}}}$/mmHg1.091–1.331–0.401
    ${{\rm{ME}}_{\rm{DBP}}}$/mmHg0.526–1.254–0.812
    ${{\rm{SD}}_{\rm{SBP}}}$/mmHg8.5342.7233.584
    ${{\rm{SD}}_{\rm{DBP}}}$/mmHg6.2342.1324.053
    DownLoad: CSV

    表 6  15名测试者血压和心音相关数据统计结果

    Table 6.  Datas related to heart sounds and blood pressure of 15 testers.

    测试者状态${\rm{HSTT}}$/msK计算SBP/mmHg实测SBP/mmHg计算DBP/mmHg实测DBP/mmHg
    健康279.43.38122.46121.6373.1672.02
    高血压患者267.84.52151.94148.5884.3481.17
    DownLoad: CSV
  • [1]

    WHO NCD Mortality and Morbidity http://www.who.int/gho/ncd/mortality_morbidity/en/ [2015−09−07]

    [2]

    Durand L G, Pibarot P 1995 Crit. Rev. Biomed. Eng. 23 163Google Scholar

    [3]

    Liu C C, Springer D B, Clifford G D 2017 Physiol. Meas. 38 1730Google Scholar

    [4]

    Bartels A, Harder D 1992 Clin. Phys. Physiol. Meas. 13 249Google Scholar

    [5]

    Tanigawa N, Smith D, Craige E 1991 Jpn. Circ. J. 55 737Google Scholar

    [6]

    Zhang X Y, Zhang Y T 2006 Proceedings of the IEEE Engineering in Medicine and Biology Society New York, USA, August 30−September 3, 2006 p2888

    [7]

    Peng R C, Yan W R, Zhang N L, Lin W H, Zhou X L, Zhang Y T 2015 Sensors-basel 15 23653Google Scholar

    [8]

    Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C 2008 Cardiovasc. Ultrasoun. 6 41Google Scholar

    [9]

    Tao Y W CN104510491A [2015−04−15]

    [10]

    黄正钦 2014 硕士学位论文 (昆明: 云南大学)

    Huang Z Q 2014 M. S. Thesis (Kunming: Yunnan University) (in Chinese)

    [11]

    Shriram R, Wakankar A, Daimiwal N 2010 Proceedings of International Conference on Bioinformatics and Biomedical Technology Chengdu, China, April 16−18, 2010 p100971242

    [12]

    Landowne M 1957 Circ. Res. 5 594Google Scholar

    [13]

    Payne R A, Symeonides C N, Webb D J, Maxwell S R J 2006 J. Appl. Physiol. 100 136Google Scholar

    [14]

    蔡任圃 2012 科学月刊 507 236

    Cai R P 2012 Science Monthly 507 236

    [15]

    周静, 杨永明, 何为 2005 中国生物医学工程学报 24 685Google Scholar

    Zhou J, Yang Y M, He W 2005 Chin. J. Biomed. Eng. 24 685Google Scholar

    [16]

    Ding X R, Zhao R, Yang G Z, Pettigrew R 2016 IEEE J. Biomed. Health 20 1Google Scholar

    [17]

    Lim K H, Shin Y D, Park S H, Bae J H, Lee H J, Kim S J 2013 Pak. J. Med. Sci. 29 1023

  • [1] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [2] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [3] Sun Jia-Tao, Meng Sheng. The valley degree of freedom of an electron. Acta Physica Sinica, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [4] Cheng Xie-Feng, Li Wei. Research on heart-sound graphical processing methods based on heart-sounds window function. Acta Physica Sinica, 2015, 64(5): 058703. doi: 10.7498/aps.64.058703
    [5] Zhang Ke-Sheng, Chen Liu-Kui, Ou Wei-Hua, Jiang Xue-Qin, Long Fei. A theory for monitoring combustion of natural gas based on the maximum point in sound absorption spectrum. Acta Physica Sinica, 2015, 64(5): 054302. doi: 10.7498/aps.64.054302
    [6] Wu Jian-Xiong, Cheng Teng, Zhang Qing-Chuan, Gao Jie, Wu Xiao-Ping. Optical detection sensitivity of area light source in optical read-out IR imaging. Acta Physica Sinica, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [7] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [8] Zhou Guo-Quan. The beam propagation factor and the kurtosis parameter of a Gaussian vortex beam. Acta Physica Sinica, 2012, 61(17): 174102. doi: 10.7498/aps.61.174102
    [9] Fu Mao-Jing, Zhuang Jian-Jun, Hou Feng-Zhen, Ning Xin-Bao, Zhan Qing-Bo, Shao Yi. Extracting human gait series based on the wavelet transform. Acta Physica Sinica, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [10] Cai Qi-Fa, Huang Si-Xun, Gao Shou-Ting, Zhong Ke, Li Zi-Qiang. A new method for calculating vorticity. Acta Physica Sinica, 2008, 57(6): 3912-3919. doi: 10.7498/aps.57.3912
    [11] Meng Qing-Miao. The instantaneous radiant exitance of non-static black holes. Acta Physica Sinica, 2005, 54(1): 471-474. doi: 10.7498/aps.54.471
    [12] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [13] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
    [14] LI GENG-YING. AN EFFECTIVE METHOD FOR SIGNAL ENHA-NCEMENT IN SOLID-STATE MAGNETIC RESONANCE SPECTROSCOPY. Acta Physica Sinica, 1994, 43(8): 1365-1370. doi: 10.7498/aps.43.1365
    [15] JIA YUN-FA, WANG JUN-YI. THE PEAK EFFECT OF THE Pb-40wt% In ALLOYS IN A LONGITUDINAL MAGNETIC FIELD. Acta Physica Sinica, 1985, 34(6): 820-822. doi: 10.7498/aps.34.820
    [16] GUI YUAN-XING, ZHANG JI-GUANG, ZHANG YANG, CHEN FANG-PEI. A DIRECT DERIVATION OF THE KERR-NEWMAN METRIC. Acta Physica Sinica, 1984, 33(8): 1129-1136. doi: 10.7498/aps.33.1129
    [17] XIE SI-SHEN, LIANG JING-KUI, LI YIN-YUAN. THE INCOMMENSURATE PHASE OF LiKSO4. Acta Physica Sinica, 1984, 33(2): 235-240. doi: 10.7498/aps.33.235
    [18] LI MING-XIAN. MEASUREMENT OF THE DETECTION IMPEDANCE AND A DESIGN FOR INCREASING THE SENSITIVITY OF THE DETECTOR IN THE ACOUSTIC IMPEDANCE METHOD. Acta Physica Sinica, 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
    [19] CHEN FUNG-CHU. BEITRAG ZUR THEORIE DES FREITRAGERS MIT GROSSER DURCHBIEGUNG. Acta Physica Sinica, 1955, 11(1): 55-71. doi: 10.7498/aps.11.55
    [20] CHIEN WEI-ZANG, YEH KAI-YUAN. ON THE LARGE DEFLECTION OF CIRCULAR PLATE. Acta Physica Sinica, 1954, 10(3): 209-238. doi: 10.7498/aps.10.209
Metrics
  • Abstract views:  11601
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2020
  • Accepted Date:  07 May 2020
  • Available Online:  12 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回