x

## 留言板

 引用本文:
 Citation:

## ON THE LARGE DEFLECTION OF CIRCULAR PLATE

CHIEN WEI-ZANG, YEH KAI-YUAN
PDF

#### Abstract

Equations for the large deflection of thin plate established by Th. von Karman has been well known for many years. But so far there have been only a few iproblems studied with numerical certainty. S. Way was the first to apply these equations to solve the problem of a clamped plate under uniform pressure by the method of power series. After this, S. Levy found the solution of the simply supported rectangular plate under uniform load by the method of double trigonometric series. Both methods are too labourious to be applicable to other more important cases. Lately, Chien Wei-zang treated Way's problem again by means of the perturbation method and obtained excellent results. By the method as given by Chien Wei-zang, Yeh Kai-yuan worked out the problem of circular plate with a central hole under central concentrated load.In this paper, more results are given for various circular plates under various edge conditions. These include uniformly loaded circular plate under various edge conditions (section 2) and central concentrated loaded circular plate under various edge conditions (section 3). Such edge conditions are: (1) simply supported, (2) simply hinged, (3) rigidly clamped, (4) clamped but free to slip, (5) edge clamped but with possible slipping in horizontal direction, (6) edge simply supported but elastically fastened, and (7) edge clamped in elastic wall.All these results are presented in such a form that direct application in design problem is possible. In particular cases, under edge conditions (1) to (4), as σ=0.3, design formulae and curves for central deflection, radial tensile stress and radial bending stress are presented.

#### 参考文献

 [1]

#### 施引文献

•  [1]
•  [1] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应. 物理学报, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498 [2] 邬融, 孙明营, 周申蕾, 乔战峰, 华能. 衍射波导用于大视场角的物理问题. 物理学报, 2020, 69(23): 234209. doi: 10.7498/aps.69.20200835 [3] 岳晓乐, 向以琳, 张莹. 形状记忆合金薄板系统全局激变现象分析. 物理学报, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155 [4] 陈云龙, 伍歆. 力梯度辛方法在圆型限制性三体问题中的应用. 物理学报, 2013, 62(14): 140501. doi: 10.7498/aps.62.140501 [5] 徐惠, 陈丽华, 莫嘉琪. 一类奇摄动薄板弯曲问题的匹配渐近解. 物理学报, 2011, 60(10): 100201. doi: 10.7498/aps.60.100201 [6] 薛春霞, 张善元, 树学锋. 横向磁场中大挠度金属薄板的混沌振动. 物理学报, 2010, 59(9): 6599-6605. doi: 10.7498/aps.59.6599 [7] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708 [8] 张高明, 彭景翠, 翦知渐, 黄小益. 左手材料薄板波导中模式之间的正交关系. 物理学报, 2006, 55(4): 1846-1850. doi: 10.7498/aps.55.1846 [9] 于熙令, 金惠强, 阎光辉, 王光瑞, 陈式刚. 强迫布鲁塞尔振子与圆映象. 物理学报, 1990, 39(3): 351-358. doi: 10.7498/aps.39.351 [10] 张忠建, 陈式刚. 圆映象的符号动力学. 物理学报, 1989, 38(1): 1-8. doi: 10.7498/aps.38.1 [11] 王兆申, 曹永君. 准光学接收系统隔离度的理论极限问题. 物理学报, 1983, 32(10): 1323-1327. doi: 10.7498/aps.32.1323 [12] 黄择言. 一边平夾另一边受均布力矩作用的环形薄板大挠度问题. 物理学报, 1957, 13(4): 313-338. doi: 10.7498/aps.13.313 [13] 黄择言. 均匀载荷下固定边环形薄板的大挠度问题. 物理学报, 1957, 13(4): 294-312. doi: 10.7498/aps.13.294 [14] 黄择言. 弹性圆薄板在均布边缘力矩作用下的弯曲. 物理学报, 1956, 12(6): 597-606. doi: 10.7498/aps.12.597 [15] 顾璆琳. 在均布载荷作用下受有预加张力的弹性圆薄膜大挠度问题. 物理学报, 1956, 12(4): 319-338. doi: 10.7498/aps.12.319 [16] 叶开沅. 变厚度弹性圆薄板问题. 物理学报, 1955, 11(3): 207-218. doi: 10.7498/aps.11.207 [17] 陈凤初. 懸樑的大撓度问题. 物理学报, 1955, 11(1): 55-71. doi: 10.7498/aps.11.55 [18] 胡海昌. 球面扁薄圆壳的跳跃问题. 物理学报, 1954, 10(2): 105-136. doi: 10.7498/aps.10.105 [19] 胡海昌. 在均佈及中心集中载荷作用下圆板的大撓度问题. 物理学报, 1954, 10(4): 383-394. doi: 10.7498/aps.10.383 [20] 叶开沅. 边缘载荷下环形薄钣大撓度问题. 物理学报, 1953, 9(2): 110-129. doi: 10.7498/aps.9.110
##### 计量
• 文章访问数:  12224
• PDF下载量:  1177
• 被引次数: 0
##### 出版历程
• 收稿日期:  1954-05-18
• 刊出日期:  1954-03-20

/