Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal

Liu Zhi-Chao Xu Qiao Lei Xiang-Yang Geng Feng Wang Xiang-Feng Zhang Shuai Wang Jian Zhang Qing-Hua Liu Min-Cai

Citation:

Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal

Liu Zhi-Chao, Xu Qiao, Lei Xiang-Yang, Geng Feng, Wang Xiang-Feng, Zhang Shuai, Wang Jian, Zhang Qing-Hua, Liu Min-Cai
PDF
HTML
Get Citation
  • The large aperture deuterated potassium dihydrogen phosphate (DKDP) is an important frequency conversion crystal in a large power laser device. There are many defects inside the DKDP bulk material, including the varying element impurities and electronic defects. Comparing with the defect-free material, these bulk defects can easily absorb incident laser energy and pose the risks of initiating damage sites when exposed to high-energy lasers. Beside bulk defects, there are surface defects originating from the DKDP machining process, including cracks, scratches and protuberances. These surface defects affect the damage performance of DKDP crystal by increasing light absorption and weakening local mechanical strength. Due to the defects from both bulk and surface, the actual damage threshold of DKDP crystal is much lower than the expected theoretical value. The lack of its laser damage resistance seriously restricts the laser output power. In this study, the off-line sub-nanosecond laser conditioning technology is proposed to effectively improve the laser damage performance of large aperture DKDP crystal. Its principle is to irradiate DKDP with a mild laser fluence in advance. Although the laser pretreatment cannot directly eliminate the impurities, dislocations, grain boundaries or other macro structural defects in crystals, it indeed changes the distribution and density of intrinsic point defects on a micro-scale. It suggests that the complicated reactions of electron-hole, atom-vacancy and the intrinsic point defect annihilation caused by the microstructural transformation of crystal materials under laser conditioning are the possible reasons for reducing absorption and improving the damage resistance. In this experiment, the result of the damage to high-power laser device shows that the mean surface damage density of DKDP crystal at 9 J/cm2 decreases from 5.02 pp/cm2 to 0.55 pp/cm2 after sub-nanosecond laser conditioning. The laser conditioning can remove the protuberance defects on the surface, thus reducing the surface damage density. In addition, the damage size probably decreases after laser conditioning. There is a leftward shift in the damage size curve after laser conditioning, and its peak decreases from 25 μm to 18 μm–20 μm. In addition, due to the removal effect of laser conditioning on defects, the spatial distribution of damage points after sub-nanosecond laser irradiation turns more uniform. This study provides a foundation for the applications of off-line sub-nanosecond laser conditioning technology in high-power laser facility.
      Corresponding author: Xu Qiao, xuq_rclf@163.com
    [1]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [2]

    Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar

    [3]

    Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505

    [4]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar

    [5]

    Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar

    [6]

    Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar

    [7]

    Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar

    [8]

    Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar

    [9]

    Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133

    [10]

    Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar

    [11]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar

    [12]

    DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar

    [13]

    Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L

    [14]

    Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374

    [15]

    Duchateau G 2009 Opt. Express 17 10434Google Scholar

    [16]

    Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M

    [17]

    Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar

    [18]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K

    [19]

    赵元安 2016 光学精密工程 24 2938Google Scholar

    Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar

    [20]

    王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183

    Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183

    [21]

    Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar

    [22]

    Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar

    [23]

    Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238

    [24]

    Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K

    [25]

    Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar

    [26]

    Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332

    [27]

    Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar

    [28]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar

  • 图 1  大口径DKDP晶体离线亚纳秒激光预处理装置示意图

    Figure 1.  Schematic diagram of off-line sub-nanosecond laser conditioning device for large aperture DKDP crystal.

    图 2  大口径DKDP晶体元件在9 J/cm2通量辐照后的损伤点暗场图 (a)全口径暗场图; (b)跨越预处理分界线的损伤点; (b1)表面损伤显微图; (b2)体损伤散射图; (c)大尺寸体损伤点; (d)大尺寸表面损伤点

    Figure 2.  The damage sites micrograph under dark field of large aperture DKDP crystal at 9 J/cm2: (a) Full-aperture image; (b) the damage site located at laser conditioning boundary; (b1) zoom in on surface damage site; (b2)zoom in on bulk damage site; (c) big size bulk damage; (d) big size surface damage.

    图 3  入射面的损伤点分布示意图 (a)和损伤密度分布曲线(b)

    Figure 3.  The diagram of damage point distribution (a) and damage density curve (b) on the incident side.

    图 4  出射面的损伤点分布示意图 (a)和损伤密度分布曲线(b)

    Figure 4.  The diagram of damage point distribution (a) and damage density curve (b) on the exit side.

    图 5  经过 (a)和未经过(b)激光预处理的凸起压入点缺陷的损伤差异

    Figure 5.  Comparison of DKDP surface damage induced by protuberance defects with (a) and without(b) laser conditioning.

    图 6  预处理前后体损伤密度随激光能量密度变化曲线对比

    Figure 6.  Comparison of damage density curves with and without laser conditioning.

  • [1]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [2]

    Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar

    [3]

    Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505

    [4]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar

    [5]

    Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar

    [6]

    Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar

    [7]

    Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar

    [8]

    Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar

    [9]

    Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133

    [10]

    Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar

    [11]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar

    [12]

    DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar

    [13]

    Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L

    [14]

    Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374

    [15]

    Duchateau G 2009 Opt. Express 17 10434Google Scholar

    [16]

    Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M

    [17]

    Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar

    [18]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K

    [19]

    赵元安 2016 光学精密工程 24 2938Google Scholar

    Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar

    [20]

    王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183

    Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183

    [21]

    Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar

    [22]

    Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar

    [23]

    Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238

    [24]

    Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K

    [25]

    Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar

    [26]

    Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332

    [27]

    Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar

    [28]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing. High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser. Acta Physica Sinica, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [3] An Ran, Fan Xiao-Zhen, Lu Jian-Xin, Wen Qiao. Design and experimental study on high quality beam and high stability power of laser. Acta Physica Sinica, 2018, 67(7): 074201. doi: 10.7498/aps.67.20171932
    [4] Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface. Acta Physica Sinica, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [5] Wang Chao, Wei Hui, Wang Jiang-Feng, Jiang You-En, Fan Wei, Li Xue-Chun. Laser diode pumped Nd:YAG laser with high repetition and high average power. Acta Physica Sinica, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [6] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Dai Wei, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [7] Yang Wei-Qiang, Hou Jing, Song Rui, Liu Ze-Jin. Theoretical analysis of two-stage pumping technology for high power fiber lasers. Acta Physica Sinica, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [8] Wang Kun-Peng, Yan Shi. S substituting for P point defect-induced laser damage in KDP crystals. Acta Physica Sinica, 2011, 60(9): 097401. doi: 10.7498/aps.60.097401
    [9] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [10] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan. Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass. Acta Physica Sinica, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [11] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [12] Zhao Xing-Hai, Hu Jian-Ping, Gao Yang, Pan Feng, Ma Ping. Laser induced damage and fracture of optical fiber in vacuum chamber. Acta Physica Sinica, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [13] Wang Feng-Rui, Huang Jin, Liu Hong-Jie, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution. Acta Physica Sinica, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [14] Lu Yuan-Fu, Xie Shi-Yong, Bo Yong, Cui Qian-Jin, Zong Nan, Gao Hong-Wei, Peng Qin-Jun, Cui Da-Fu, Xu Zu-Yan. A high power quasi-continuous-wave yellow laser based on intracavity sum-frequency generation. Acta Physica Sinica, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [15] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [16] Zhao Xing-Hai, Gao Yang, Xu Mei-Jian, Duan Wen-Tao, Yu Hai-Wu. Studies on nanosecond laser induced damage to fused fibers. Acta Physica Sinica, 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [17] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [18] Liang Li-Ping, Zhang Lei, Sheng Yong-Gang, Xu Yao, Wu Dong, Sun Yu-Han, Jiang Xiao-Dong, Wei Xiao-Feng. Studies on the laser-induced damage resistance of sol-gel derived ZrO2-TiO2 composite high refractive index films. Acta Physica Sinica, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [19] CHEN JIAN-WEN, FU SHU-FEN, LIU MIAO-HONG. ELECTRIC DISCHARGE PUMPED XeBr LASER WITH HIGH POWER AND HIGH EFFICIENCY. Acta Physica Sinica, 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] XU ZHI-ZHAN, LI-AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, YIN GUANG-YU, HOU XING-FA. A SIX-BEAM HIGH POWER NEODYMIUM GLASS LASER. Acta Physica Sinica, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
Metrics
  • Abstract views:  4950
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2020
  • Accepted Date:  05 January 2021
  • Available Online:  29 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回