Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-solid-state high-power deep ultraviolet picosecond laser

OU Zuoyuan XU Sizhi LIU Xing GAO Yubo CHEN Junzhan HE Xingyu LU Haotian WU Chonghao GUO Chunyu GUO Li WU Xu LUE Qitao RUAN Shuangchen

Citation:

All-solid-state high-power deep ultraviolet picosecond laser

OU Zuoyuan, XU Sizhi, LIU Xing, GAO Yubo, CHEN Junzhan, HE Xingyu, LU Haotian, WU Chonghao, GUO Chunyu, GUO Li, WU Xu, LUE Qitao, RUAN Shuangchen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Deep ultraviolet (DUV) picosecond lasers, operating in a 200–280 nm wavelength range, possess significant advantages, such as high photon energy and high resolution. These attributes make them highly promising for applications like semiconductor detection, ensuring the production of high-quality, defect-free semiconductor devices, as well as for advanced scientific research and industrial processing. High-power DUV picosecond lasers are typically generated via nonlinear frequency conversion of infrared lasers based on master oscillator power amplifier (MOPA) configurations. Among various DUV laser technologies, systems based on β-BBO crystals are particularly valuable due to their simple design and cost-effectiveness. However, the linear two-photon absorption, as well as the formation of dynamic color centers in BBO, are significant limitations for high-power, high-repetition-rate UV radiation, leading to thermal effects. Hence, it is important to carefully study the performance characteristics of BBO for high-power, high-repetition-rate pulse generation in the UV at 266 nm.This study presents a high-power, all-solid-state DUV picosecond laser developed using a 1064 nm Nd:YVO4 MOPA amplification architecture. In this experimental setup, a 50 mW, 7.8 ps, 20 MHz all-fiber SESAM mode-locked laser is used as a seed source, achieving 140 W in amplified output power 8.33 ps in pulse duration at 1064 nm via MOPA. In the nonlinear frequency conversion process, the amplified laser pulses are initially focused onto an LBO crystal for secondary harmonic generation (SHG). Precise temperature control of the LBO crystal can generate a 532 nm output with 73 W in power and 6.93 ps in pulse duration, while achieving 52.64% in conversion efficiency. Two-photon absorption is a key factor limiting the further enhancement of deep ultraviolet (DUV) laser power. By investigating the transmittance and temperature rise of a high-power dual-wavelength laser in a β-BBO crystal, the results indicate that strong two-photon absorption occurs under high-power DUV irradiation. This absorption induces significant thermal effects, resulting in a temperature gradient within the crystal and leading to phase mismatch, which severely affects frequency conversion efficiency and output stability.To solve this problem and further increase the DUV output power, a large-spot pumping scheme (spot size: 1.5 mm × 1 mm) is adopted in this work. Under a pump peak power density of less than 1.11 GW/cm2, the thermal gradient caused by two-photon absorption is effectively suppressed, achieving maximum fourth-harmonic output power of 11 W. The corresponding single-pulse energy reaches 13.75 μJ. The root mean square (RMS) jitter, measured in an 8-hour period, is less than 0.96%.This all-solid-state DUV laser demonstrates excellent performance characteristics, including high average power, stability, resolution, and peak power, making it a strong candidate for applications requiring efficient and high-precision processing or detection. By further increasing the pump power and optimizing the temperature control system, the output power of the laser can be significantly enhanced, thereby broadening its applicability and competitiveness in high-end fields such as semiconductor manufacturing, advanced research, and industrial processing.
  • 图 1  全固态深紫外皮秒激光器实验装置图. AOM, 声光调制器; Pre-Amp, 光纤预放大模块; HWP, 半波片; PBS, 偏振分光棱镜; TFP, 薄膜偏振片; DM, 双色镜

    Figure 1.  All-solid-state DUV picosecond lasers experimental setup. AOM, acoustic optical modulator; Pre-Amp, fiber pre-amplification module; HWP, half-wave plate; PBS, polarizing beam splitter prisms; TFP, thin-film polarizer; DM, dichroic mirror.

    图 2  近红外光光束特性 (a) 近场光斑及M2; (b) 自相关曲线; (c) 重复频率; (d) 输出光谱

    Figure 2.  Beam characteristics of Near-infrared laser: (a) Near-field spot and M2; (b) autocorrelation curve; (c) repetition rate; (d) output spectrum.

    图 3  绿光光束特性 (a) 绿光功率随近红外光功率变化曲线; (b) 自相关曲线及重复频率; (c) 近场光斑及M2; (d) 输出光谱

    Figure 3.  Beam characteristics of green laser: (a) Green laser power changes with Near-infrared laser power; (b) autocorrelation curve and repetition rate; (c) near-field spot and M2; (d) output spectrum.

    图 4  不同激光功率注入下的透过率与β-BBO晶体温度 (a) 绿光; (b) 深紫外光

    Figure 4.  Transmission and temperature of β-BBO crystal under different laser power injection: (a) Green laser; (b) DUV.

    图 5  深紫外光光束特性 (a) 深紫外光功率随绿光功率变化曲线; (b) 输出光谱; (c) 自相关曲线及重复频率; (d) 输出功率稳定性

    Figure 5.  Beam characteristics of DUV: (a) DUV power changes with green laser power; (b) output spectrum; (c) autocorrelation curve and repetition rate; (d) stability of output power.

  • [1]

    Liu K, Li H, Qu S Z, Liang H K, Wang Q J, Zhang Y 2020 Opt. Express 28 18360Google Scholar

    [2]

    Wen N, Zhang S J, Zong N, Gao H W, Bo Y, Peng Q J, Cui D F, Xu Zu Y 2022 Optica Advanced Photonics Congress 2022, Maastricht, Limburg Netherlands, July 24-28, 2022 NpTu 1G 6

    [3]

    Mutailipu M, Pan S 2020 Angew. Chem. Int. Ed. 59 20302Google Scholar

    [4]

    Zhu J L, Liu J M, Xu T L, Yuan S, Zhang Z X, Jiang H, Gu H G, Zhou R J, Liu S Y 2022 Int. J. Extreme Manuf. 4 032001Google Scholar

    [5]

    Meshulach D, Dolev I, Yamazaki Y, Tsuchiya K, Kaneko M, Yoshino K, Fujii T 2010 Metrology, Inspection, and Process Control for Microlithography XXIV. SPIE San Jose, California, United States, February 21-25 7638 76380K

    [6]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno Massimo, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley WM, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik C. Svetina M, Trovo M, Veronese M, Zangrando D, Zangrando M 2013 Nat. Photonics 7 913Google Scholar

    [7]

    Cinquegrana P, Demidovich A, Kurdi G, Nikolov I, Sigalotti P, Susnjar P, Danailov M B 2021 High Power Laser Sci. Eng. 9 e61Google Scholar

    [8]

    Tanaka S, Arakawa M, Fuchimuka A, Sasaki Y, Onose T, Kamba Y, Igarashi H, Qu C, Tamiya M, Oizumi H, Ito S, Kakizaki K, Xuan H W, Zhao Z G, Kobayashi Y, Mizoguchi H 2016 Solid State Lasers XXV: Technology and Devices. SPIE San Francisco, California, United States February 13-18 9726 424

    [9]

    Fujimoto J, Kobayashi M, Kakizaki K, Oizumi H, Mimura T, Matsunaga T, Mizoguchi H 2017 High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI. SPIE San Francisco, California, United States January28-February 2 10097 234

    [10]

    Cui Z J, Sun M Y, Liu De’an, Zhu, J Q 2022 Opt. Express 30 43354Google Scholar

    [11]

    Liu Q, Yan X P, Fu X, Gong M, Wang D S 2008 Laser Phys. Lett. 6 203

    [12]

    王子文, 曹雪辰, 张艳林, 程东林, 靳丕铦, 卢华东 2024 中国激光 51 1401003Google Scholar

    Wang Z W, Cao X C, Zhang Y L, Cheng D L, Jin P X, Lu H D 2024 Chin. J. Lasers 51 1401003Google Scholar

    [13]

    何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 物理学报 49 2106Google Scholar

    He J L, Lu X Q, Jia Y L, Man B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106Google Scholar

    [14]

    Wang N, Zhang J Y, Yu H J, Lin X C, Yang G W 2022 Opt. Express 30 5700Google Scholar

    [15]

    陈国柱, 沈咏, 刘曲, 邹宏新 2014 物理学报 63 054204Google Scholar

    Chen G Z, Shen Y, Liu Q, Zou H X 2014 Acta Phys. Sin. 63 054204Google Scholar

    [16]

    郑佳琪, 丛振华, 刘兆军, 王上, 赵智刚 2021 中国激光 48 1201008Google Scholar

    Zheng J Q, Cong Z H, Liu Z J, Wang S, Zhao Z G 2021 Chin. J. Lasers 48 1201008Google Scholar

    [17]

    Orii Y, Kohno K, Tanaka H, Yoshimura M, Mori Y, Nishimae J, Shibuya K 2022 Opt. Express 30 11797Google Scholar

    [18]

    Orii Y, Yoshii K, Kohno K, Tanaka H, Shibuya K, Okada G, Mori Y, Nishimae J, Yoshimura M 2023 Opt. Express 31 14705Google Scholar

    [19]

    俞航航, 张志韬, 玄洪文 2024 中国激光 51 0701020Google Scholar

    Yu H H, Zhang Z T, Xuan H W 2024 Chin. J. Lasers 51 0701020Google Scholar

    [20]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [21]

    Kumar S C, Casals J C, Wei J X, Ebrahim-Zadeh M 2015 Opt. Express 23 28091Google Scholar

    [22]

    Takahashi M, Osada A, Dergachev A, Moulton P F, Cadatal-Raduban M, Shimizu T, Sarukura N 2011 J. Cryst. Growth 318 606Google Scholar

    [23]

    R Bhandari, T Taira, A Miyamoto, Y Furukawa, T Tago 2012 Opt. Mater. Express 2 907Google Scholar

  • [1] Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser. Acta Physica Sinica, doi: 10.7498/aps.73.20231923
    [2] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.73.20241115
    [3] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, doi: 10.7498/aps.72.20230877
    [4] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, doi: 10.7498/aps.70.20210568
    [5] Wu Fang, Bu Yang, Liu Zhi-Fan, Wang Shao-Qing, Li Si-Kun, Wang Xiang-Zhao. Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band. Acta Physica Sinica, doi: 10.7498/aps.70.20201403
    [6] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, doi: 10.7498/aps.69.20200083
    [7] Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi. Efficient third harmonic generation of 355 nm picosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.68.20190513
    [8] Gai Min-Qiang, Wang Ying, Pan Shi-Lie. Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2. Acta Physica Sinica, doi: 10.7498/aps.68.20182145
    [9] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, doi: 10.7498/aps.64.164205
    [10] Liu Huan, Gong Ma-Li. Compact LD end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, doi: 10.7498/aps.58.5443
    [11] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, doi: 10.7498/aps.58.5035
    [12] Generation of single plasma channel in air. Acta Physica Sinica, doi: 10.7498/aps.56.7114
    [13] Zhao Shu-Lin, Zhu Bao-Qiang, Zhan Ting-Yu, Cai Xi-Jie, Liu Ren-Hong, Yang Lin, Zhang Zhi-Xiang, Bi Ji-Jun. Research on pulse shape properties of high-power Nd:glass laser frequency tripling. Acta Physica Sinica, doi: 10.7498/aps.55.4170
    [14] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, doi: 10.7498/aps.55.4161
    [15] Liu Yun-Quan, Zhang Jie, Liang Wen-Xi, Wang Zhao-Hua. Theoretical and experimental studies on third harmonic generation of femtosecond Ti:sapphire laser. Acta Physica Sinica, doi: 10.7498/aps.54.1593
    [16] Ma Jing, Zhang Ruo-Bing, Liu Bo, Zhu Chen, Chai Lu, Zhang Wei-Li, Zhang Zhi-Gang, Wang Qing-Yue. Idler second harmonic generation in femtosecond BBO optical parametric amplification. Acta Physica Sinica, doi: 10.7498/aps.54.3675
    [17] Tao Zong-Ming, Zhang Yin-Chao, Lü Yong-Hui, Hu Shun-Xing, Shao Shi-Sheng, Cao Kai-Fa, Liu Xiao-Qin, Yue Gu-Ming, Hu Huan-Ling. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, doi: 10.7498/aps.53.2589
    [18] Lv Tie-Zheng, Wang Tao, Qian Lie-Jia, Lu Xin, Wei Zhi-Yi, Zhang Jie. . Acta Physica Sinica, doi: 10.7498/aps.51.1268
    [19] HE JING-LIANG, LU XING-QIANG, JIA YU-LEI, MAN BAO-YUAN, ZHU SHI-NING, ZHU YONG -YUAN. ALL-SOLID-STATE Nd:YVO4 UV LASER AT 266nm BY FOURTH HARMONIC USING A BBO CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.49.2106
    [20] MA HONG-LIANG, SUN KE-XU, YI RONG-QING, CUI YAN-LI, TANG DAO-YUAN, ZHENG ZHI-JIAN. STUDY OF SOFT X-RAY CONVERSION EFFICIENCY FROM FREQUENCY-TRIPLED 0.35μm LASER-IRRADIATED DIFFERENT MATERIAL PLANAR TARGETS. Acta Physica Sinica, doi: 10.7498/aps.45.1688
Metrics
  • Abstract views:  426
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2025
  • Accepted Date:  08 May 2025
  • Available Online:  10 May 2025
  • /

    返回文章
    返回