Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of radiation characteristics in a parametrically driven cavity

SHANG Xue CAO Binfang GUO Miaodi HE Zhi ZHOU Chunxiao

Citation:

Research of radiation characteristics in a parametrically driven cavity

SHANG Xue, CAO Binfang, GUO Miaodi, HE Zhi, ZHOU Chunxiao
cstr: 32037.14.aps.74.20250223
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Cavity quantum electrodynamics (QED) serves as a fundamental platform for studying light-matter interactions at a single-particle level and has been extensively investigated in fundamental physics and quantum information. Recent development of parametrically squeezed techniques has demonstrated that they have the remarkable ability to exponentially enhance coherent atom-cavity coupling. However, the full extent to which these techniques can manipulate quantum optical phenomena requires further exploration. This work systematically investigates the influence of optical parametric amplification on single-photon excited atom-cavity systems within a parametrically driven cavity. In the proposed model, optical parametric amplification converts the driving photons into a squeezed cavity mode, which enhances the atom-cavity interaction into the strong coupling region. Through analytical derivation of atomic and cavity radiation spectra, we demonstrate that the optical parametric amplification induces splitting of atomic radiation spectra while exerting negligible effects on spectral intensity. Conversely, the cavity transmission spectrum exhibits both pronounced splitting and nonlinear intensity amplification. Notably, as driving field intensity approaches a critical intensity regime, the cavity radiation spectrum intensity is significantly enhanced. The underlying mechanism is parametric driving amplification, which converts the driving light into a squeezed cavity mode. When this squeezed mode is mapped back to the fundamental mode of the cavity through Bogoliubov squeezing transformation, the pump photons within the squeezed cavity mode are converted into the photons that contribute to the radiation spectrum of the cavity, thereby amplifying its intensity. This parametric enhancement method not only deepens the basic understanding of light-matter interactions, but also establishes a practical framework for improving the single-photon detection sensitivity in cavity-based quantum systems. These findings have broad prospects for quantum sensing and information processing applications.
      Corresponding author: ZHOU Chunxiao, zhouchunxiao567@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104150, 12304405), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 24B0639), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ30437), the Research Foundation of Hunan University of Art and Science, China (Grant No. 23ZZ04), the Natural Science Foundation of Shaanxi Provincial Department of Education, China (Grant No. 23JKJ0483), the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology, China (Grant No. BK202429), and the Hunan Province’s “14th Five Year Plan” Applied Characteristic Discipline “Electronic Science and Technology”, China.
    [1]

    Nimmrichter S, Hornberger K 2013 Phys. Rev. Lett. 110 160403Google Scholar

    [2]

    Horodecki R, Horodecki P, Horodecki M, et al. 2009 Rev. Mod. Phys. 81 865Google Scholar

    [3]

    单传家, 夏云杰 2006 物理学报 55 1585Google Scholar

    Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585Google Scholar

    [4]

    Wang Q, Chen W, Xavier G, et al. 2008 Phys. Rev. Lett. 100 090501Google Scholar

    [5]

    Motes K R, Olson J P, Rabeaux E J, et al. 2015 Phys. Rev. Lett. 114 170802Google Scholar

    [6]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [7]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [8]

    Jané E, Plenio M B, Jonathan D 2002 Phys. Rev. A 65 050302(RGoogle Scholar

    [9]

    Schuster D I, Bishop L S, Chuang I L 2011 Phys. Rev. A 83 012311Google Scholar

    [10]

    Weiher K, Agudelo E, Bohmann M 2019 Phys. Rev. A 100 043812Google Scholar

    [11]

    Guo M D, Li H F, Wang F L, et al. 2023 Opt. Lett. 48 4037Google Scholar

    [12]

    Garziano L, Macrì V, Stassi R, et al. 2016 Phys. Rev. Lett. 117 043601Google Scholar

    [13]

    Kockum F A, Miranowicz A, Liberato S D, et al. 2019 Nat. Rev. Phys. 1 19Google Scholar

    [14]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press

    [15]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [16]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [17]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

    [18]

    Peres A, Terno D R 2004 Rev. Mod. Phys. 76 93Google Scholar

    [19]

    Ritsch H, Domokos P, Brennecke F, et al. 2013 Rev. Mod. Phys. 85 553Google Scholar

    [20]

    Guo M D, Li H F, Li N, et al. 2023 Phys. Rev. A 107 033704Google Scholar

    [21]

    Srinivasan K, Painter O 2007 Nature 450 862Google Scholar

    [22]

    Carmele A, Kabuss J, Schulze F, Reitzenstein S, Knorr A 2013 Phys. Rev. Lett. 110 013601Google Scholar

    [23]

    Liu Y C, Luan X S, Li H K, et al. 2014 Phys. Rev. Lett. 112 213602Google Scholar

    [24]

    Xiang Z L, Ashhab S, You J Q, et al. 2013 Rev. Mod. Phys. 85 623Google Scholar

    [25]

    Houdré R, Weisbuch C, Stanley R P, Oesterle U, Ilegems M 2000 Phys. Rev. Lett. 85 2793Google Scholar

    [26]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

    [27]

    Lü X Y, Wu Y, Johansson J R, et al. 2015 Phys. Rev. Lett. 114 093602Google Scholar

    [28]

    Qin W, Miranowicz A, Li P B, et al. 2018 Phys. Rev. Lett. 120 093601Google Scholar

    [29]

    Leroux C, Govia L C G, Clerk A A 2018 Phys. Rev. Lett. 120 093602Google Scholar

    [30]

    Forn-Díaz P, Lamata L, Rico E, et al. 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [31]

    Qin W, Kockum, A F, Muñoz C S, et al. 2024 Physics Reports 1078 1Google Scholar

    [32]

    Muñoz C S, Jaksch D 2021 Phys. Rev. Lett. 127 183603Google Scholar

    [33]

    Wang Y, Li C, Sampuli E M, et al. 2019 Phys. Rev. A 99 023833Google Scholar

    [34]

    Chen Y H, Qin W, Nori F 2019 Phys. Rev. A 100 012339Google Scholar

    [35]

    Wang Y, Wu J L, Han J X, et al. 2020 Phys. Rev. A 102 032601Google Scholar

    [36]

    Mollow B R 1969 Phys. Rev. 188 1969Google Scholar

    [37]

    Zhou C X, He Z, Cao B F, et al. 2021 J. Opt. Soc. Am. B 38 1359Google Scholar

    [38]

    Bhargav A M, Rakshit R K, Das S, et al. 2021 Adv. Quantum Technol. 4 2100008Google Scholar

    [39]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [40]

    Villas-Bôas C J, de Almeida N G, Serra R M, et al. 2003 Phys. Rev. A 68 061801(RGoogle Scholar

    [41]

    de Almeida N G, Serra R M, Villas-Bôas C J, et al. 2004 Phys. Rev. A 69 035802Google Scholar

    [42]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095Google Scholar

    [43]

    Xia K Y, Johnsson M, Knight P L, et al. 2016 Phys. Rev. Lett. 116 023601Google Scholar

    [44]

    Serikawa T, Yoshikawa J, Makino K, et al. 2016 Opt. Express 24 28383Google Scholar

    [45]

    Vahlbruch H, Mehmet M, Danzmann K, et al. 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • 图 1  原子与参量驱动泵浦腔的相互作用示意图. 腔中包含$ \chi^{(2)} $非线性介质和二能级原子, 其中非线性介质受到振幅$ \varOmega_{{\mathrm{p}}} $, 频率为$ \omega_{{\mathrm{p}}} $, 相位为$ \theta_{{\mathrm{p}}} $的外部驱动场泵浦, 同时原子被单光子激发至激发态. 为了消除光学参量放大带来的额外耗散, 腔耦合了一个压缩参数为$ r_{{\mathrm{e}}} $, 参考相位为$ \theta_{{\mathrm{e}}} $的压缩真空库

    Figure 1.  The schematic of our proposed method for investigating the interaction between an atom and a parametrically driven cavity. The optical cavity contains a $ \chi^{(2)} $ nonlinear medium and one two-level atom, where the nonlinear medium is pumped by a driving field of amplitude $ \varOmega_{{\mathrm{p}}} $, frequency $ \omega_{{\mathrm{p}}} $ and phase $ \theta_{{\mathrm{p}}} $, and the atom is excited to the excited state by a single photon. In order to eliminate the additional dissipation caused by optical parametric amplification, the cavity couples to a squeezed-vacuum reservoir with the squeezing parameter $ r_{{\mathrm{e}}} $ and a reference phase $ \theta_{{\mathrm{e}}} $.

    图 2  原子的单光子辐射谱, 黑色虚线对应的驱动场强度$ \varOmega_{{\mathrm{p}}} = 0 $, 红色实线对应的驱动场强度$ \varOmega_{{\mathrm{p}}} = 0.799\gamma $, 其他参数取值为$ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, $ \kappa = \gamma $

    Figure 2.  The radiation spectrum of the atom. The black dashed line and the red solid line are plotted with the driving field driving intensities of $ \varOmega_{{\mathrm{p}}} = 0 $ and $ \varOmega_{{\mathrm{p}}} = 0.799\gamma $, respectively. Other parameters are $ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, $ \kappa = \gamma $.

    图 3  腔的辐射谱, 黑色虚线对应的驱动场强度$ \varOmega_{{\mathrm{p}}} = 0 $, 红色实线对应的驱动场强度$ \varOmega_{{\mathrm{p}}} = 0.799\gamma $, 其他参数的取值为$ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, $ \kappa = \gamma $

    Figure 3.  The transmission spectrum of the cavity. The black dashed line and red solid line are plotted with the driving intensities of $ \varOmega_{{\mathrm{p}}} = 0 $ and $ \varOmega_{{\mathrm{p}}} = 0.799\gamma $, respectively. Other parameters are $ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, $ \kappa = \gamma $.

    图 4  腔的辐射谱 (a)红色实线和黑色虚线分别对应$ \varOmega_{{\mathrm{p}}} = 0 $时耦合强度为$ g = 0.5\gamma $和$ g = 1.62\gamma $时的辐射谱; (b)红色实线对应$ \varOmega_{{\mathrm{p}}} = 0.799\gamma $, $ g = 0.5\gamma $时的辐射谱, 黑色虚线对应$ \varOmega_{{\mathrm{p}}} = 0 $, $ g = 1.62\gamma $时的辐射谱. 其他参数的取值为$ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ \kappa = \gamma $

    Figure 4.  The transmission spectrum of the cavity: (a) The transmission spectrum with parametric pump field intensity $ \varOmega_{{\mathrm{p}}} = 0 $, where the red solid line and black dashed line are corresponding to the coupling strength of $ g = 0.5\gamma $ and $ g = 1.62\gamma $, respectively. (b) The red solid line is plotted with $ \varOmega_{{\mathrm{p}}} = 0.799\gamma $ and $ g = 0.5\gamma $, while the black dashed line is plotted with $ \varOmega_{{\mathrm{p}}} = 0 $ and $ g = 1.62\gamma $. Other parameters are $ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ \kappa = \gamma $.

    图 5  原子和腔模的辐射强度随驱动场强度的变化曲线, 嵌入图为根据(20)式得到的放大因子m随驱动场强度的变化曲线, 其他参数为$ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, κ = γ

    Figure 5.  The intensity of the atomic and cavity mode spectra as a function of the driving field intensity. The inset illustrates the dependence of the amplification factor m on the driving field intensity, which is derived from Eq.(20). Other parameters are $ \varDelta_{{\mathrm{c}}} = 0.8\gamma $, $ \varDelta_{{\mathrm{a}}} = 0 $, $ g = 0.5\gamma $, $ \kappa = \gamma $.

  • [1]

    Nimmrichter S, Hornberger K 2013 Phys. Rev. Lett. 110 160403Google Scholar

    [2]

    Horodecki R, Horodecki P, Horodecki M, et al. 2009 Rev. Mod. Phys. 81 865Google Scholar

    [3]

    单传家, 夏云杰 2006 物理学报 55 1585Google Scholar

    Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585Google Scholar

    [4]

    Wang Q, Chen W, Xavier G, et al. 2008 Phys. Rev. Lett. 100 090501Google Scholar

    [5]

    Motes K R, Olson J P, Rabeaux E J, et al. 2015 Phys. Rev. Lett. 114 170802Google Scholar

    [6]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [7]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [8]

    Jané E, Plenio M B, Jonathan D 2002 Phys. Rev. A 65 050302(RGoogle Scholar

    [9]

    Schuster D I, Bishop L S, Chuang I L 2011 Phys. Rev. A 83 012311Google Scholar

    [10]

    Weiher K, Agudelo E, Bohmann M 2019 Phys. Rev. A 100 043812Google Scholar

    [11]

    Guo M D, Li H F, Wang F L, et al. 2023 Opt. Lett. 48 4037Google Scholar

    [12]

    Garziano L, Macrì V, Stassi R, et al. 2016 Phys. Rev. Lett. 117 043601Google Scholar

    [13]

    Kockum F A, Miranowicz A, Liberato S D, et al. 2019 Nat. Rev. Phys. 1 19Google Scholar

    [14]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press

    [15]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [16]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [17]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

    [18]

    Peres A, Terno D R 2004 Rev. Mod. Phys. 76 93Google Scholar

    [19]

    Ritsch H, Domokos P, Brennecke F, et al. 2013 Rev. Mod. Phys. 85 553Google Scholar

    [20]

    Guo M D, Li H F, Li N, et al. 2023 Phys. Rev. A 107 033704Google Scholar

    [21]

    Srinivasan K, Painter O 2007 Nature 450 862Google Scholar

    [22]

    Carmele A, Kabuss J, Schulze F, Reitzenstein S, Knorr A 2013 Phys. Rev. Lett. 110 013601Google Scholar

    [23]

    Liu Y C, Luan X S, Li H K, et al. 2014 Phys. Rev. Lett. 112 213602Google Scholar

    [24]

    Xiang Z L, Ashhab S, You J Q, et al. 2013 Rev. Mod. Phys. 85 623Google Scholar

    [25]

    Houdré R, Weisbuch C, Stanley R P, Oesterle U, Ilegems M 2000 Phys. Rev. Lett. 85 2793Google Scholar

    [26]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

    [27]

    Lü X Y, Wu Y, Johansson J R, et al. 2015 Phys. Rev. Lett. 114 093602Google Scholar

    [28]

    Qin W, Miranowicz A, Li P B, et al. 2018 Phys. Rev. Lett. 120 093601Google Scholar

    [29]

    Leroux C, Govia L C G, Clerk A A 2018 Phys. Rev. Lett. 120 093602Google Scholar

    [30]

    Forn-Díaz P, Lamata L, Rico E, et al. 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [31]

    Qin W, Kockum, A F, Muñoz C S, et al. 2024 Physics Reports 1078 1Google Scholar

    [32]

    Muñoz C S, Jaksch D 2021 Phys. Rev. Lett. 127 183603Google Scholar

    [33]

    Wang Y, Li C, Sampuli E M, et al. 2019 Phys. Rev. A 99 023833Google Scholar

    [34]

    Chen Y H, Qin W, Nori F 2019 Phys. Rev. A 100 012339Google Scholar

    [35]

    Wang Y, Wu J L, Han J X, et al. 2020 Phys. Rev. A 102 032601Google Scholar

    [36]

    Mollow B R 1969 Phys. Rev. 188 1969Google Scholar

    [37]

    Zhou C X, He Z, Cao B F, et al. 2021 J. Opt. Soc. Am. B 38 1359Google Scholar

    [38]

    Bhargav A M, Rakshit R K, Das S, et al. 2021 Adv. Quantum Technol. 4 2100008Google Scholar

    [39]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [40]

    Villas-Bôas C J, de Almeida N G, Serra R M, et al. 2003 Phys. Rev. A 68 061801(RGoogle Scholar

    [41]

    de Almeida N G, Serra R M, Villas-Bôas C J, et al. 2004 Phys. Rev. A 69 035802Google Scholar

    [42]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095Google Scholar

    [43]

    Xia K Y, Johnsson M, Knight P L, et al. 2016 Phys. Rev. Lett. 116 023601Google Scholar

    [44]

    Serikawa T, Yoshikawa J, Makino K, et al. 2016 Opt. Express 24 28383Google Scholar

    [45]

    Vahlbruch H, Mehmet M, Danzmann K, et al. 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • [1] Zhang Zhi-Qiang. Photon Blockade in a Kerr Nonlinear Single-Mode Cavity with Optical Parametric Amplifier and Driving Field Synergy. Acta Physica Sinica, 2025, 74(16): . doi: 10.7498/aps.74.20250712
    [2] Yang Chun-Lin. Random wavenumber and nonlinear parametric effect of speckle field. Acta Physica Sinica, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [3] Chen Hai-Xia, Lin Shu-Yu. Nonlinear propagation and parameters excitation of ultrasound. Acta Physica Sinica, 2021, 70(11): 114302. doi: 10.7498/aps.70.20202093
    [4] Liu Shuo, Bai Jian-Dong, Wang Jie-Ying, He Jun, Wang Jun-Min. Measurement of quantum defect of cesium nP3/2 (n = 70—94) Rydberg states by using ultraviolet single-photon Rydberg excitation. Acta Physica Sinica, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [5] Wang Hong-Sheng, Ji Dao-Gang, Gao Yan-Lei, Zhang Yang, Chen Kai-Yan, Chen Jun-Guang, Wu Ling-An, Wang Yong-Zhong. Photonic emission analysis of cipher chips based on time-correlated single-photon counting. Acta Physica Sinica, 2015, 64(5): 058901. doi: 10.7498/aps.64.058901
    [6] Dong Yun-Song, Yang Jia-Min, Zhang Lu, Shang Wan-Li. Simulation of laser to X-ray conversion features influenced by low density gold foam. Acta Physica Sinica, 2013, 62(7): 075203. doi: 10.7498/aps.62.075203
    [7] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Correlation measurement of quantum cascade photons in single InAs quantum dot. Acta Physica Sinica, 2011, 60(1): 017804. doi: 10.7498/aps.60.017804
    [8] Xu Xun-Wei, Liu Nian-Hua. The dark lines in the spontaneous emission spectrum of a double V-type four-level atom in double-band photonic crystal. Acta Physica Sinica, 2010, 59(5): 3236-3243. doi: 10.7498/aps.59.3236
    [9] Yan Yan, Wei Qiao, Li Gao-Xiang. Nonclassical properties of atomic radiation field in a nonlinear photonic crystal. Acta Physica Sinica, 2010, 59(4): 2505-2511. doi: 10.7498/aps.59.2505
    [10] Li Jian-Fen, Li Nong, Liu Yu-Ping, Gan Yi. Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable. Acta Physica Sinica, 2009, 58(2): 779-784. doi: 10.7498/aps.58.779
    [11] Liu Wei-Hua, Song Xiao-Zhong, Wang Yi-Shan, Liu Hong-Jun, Zhao Wei, Liu Xue-Ming, Peng Qin-Jun, Xu Zu-Yan. Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [12] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [13] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. Spontaneous emission from a Λ-type atom in anisotropic photonic crystal. Acta Physica Sinica, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [14] Cheng Chun-Fu, Wang Xiao-Fang, Lu Bo. Nonlinear propagation and supercontinuum generation of a femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [15] Shi Qing-Fan, Yan Xue-Qun. Characterization of the nonlinearly excited magnon pair. Acta Physica Sinica, 2003, 52(1): 225-228. doi: 10.7498/aps.52.225
    [16] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
    [17] FENG JIAN, WANG JI-SUO, GAO YUN-FENG, ZHAN MING-SHENG. INFLUENCE OF NONLINEARITIES OF BOTH THE FIELD AND THE INTENSITY-DEPENDENT ATOM-FIELD COUPLING ON THE EMISSION SPECTRUM OF AN ATOM IN A CAVITY. Acta Physica Sinica, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [18] GUO HONG, LI GAO-XIANG, PENG JIN-SHENG. EMISSION SPECTRUM FOR A TWO-LEVEL ATOM INTERARCTING WITH GRAY-BODY RADIATION FIELD. Acta Physica Sinica, 2000, 49(5): 887-892. doi: 10.7498/aps.49.887
    [19] ZHANG PEI-LIN. TWO-PHOTON RESONANT OPTICAL WAVE-MIXING AND PARAMETRIC PROCESSES USING POTASSIUM 5d 2DJ STATE. Acta Physica Sinica, 1985, 34(8): 1040-1048. doi: 10.7498/aps.34.1040
    [20] ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ПОПЕРЕЧНОГО РАСПРЕДЕЛЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ ТЕРМИЧЕСКОГО ВОЗБУЖДЕНИЯ СПЕКТРАЛЬНЫХ ЛИНИЙ В ПЛАЗМЕ. Acta Physica Sinica, 1959, 15(4): 210-218. doi: 10.7498/aps.15.210
Metrics
  • Abstract views:  420
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2025
  • Accepted Date:  20 April 2025
  • Available Online:  10 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回