-
By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an Optical Parametric Amplifier (OPA).
To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, accounting for single-mode cavity decay. To obtain analytical solutions for optimal photon blockade conditions, the quantum state of the system is expanded in the Fock state basis up to the two-photon level, and the steady-state probability amplitudes are derived by solving the Schrödinger equation. This yields analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system under appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.
Numerical results demonstrate a significant enhancement in the average photon number under resonant conditions, providing theoretical support for optimizing singlephoton source brightness, which is essential for achieving high-brightness singlephoton sources.
Furthermore, variations in the driving phase can induce displacement of the optimal photon blockade region in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.
Additionally, the influence of Kerr nonlinearity is examined. Results show that photon blockade persists robustly across a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.
Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the system's energy levels, it does not affect the quantum interference pathways, enabling the photon blockade effect to remain stable across a wide parameter range. -
[1] Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279
[2] Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602
[3] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[4] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601
[5] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602
[6] Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387
[7] Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713
[8] Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108
[9] Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643
[10] Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802
[11] Flayac H, Savona V 2017 Phys. Rev. A 96 053810
[12] Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714
[13] Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715
[14] Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601
[15] Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467
[16] Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203]
[17] Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601
[18] Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602
[19] Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819
[20] Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030
[21] Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808
[22] Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838
[23] Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089
[24] Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879
[25] Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187
[26] Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707
[27] Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304
[28] Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123
[29] Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203
[30] Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601
[31] Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826
[32] Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707
[33] Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204
[34] Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021
[35] Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029
[36] Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202
[37] Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714
[38] Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424
[39] Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818
[40] Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043
[41] Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512
[42] Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707
[43] Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065
[44] Tan S M 1999 J. Opt. B 1 424
[45] Tan S M 2012-12-21 Quantum Optics Toolbox for MATLAB
[46] Zhang Z Q. 2025 Laser & Optoelectronics Progress, 62 0719001 (in Chinese) [张志强 2025 激光与光电子学进展 62 0719001]
[47] Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723
[48] Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402
[49] Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601
Metrics
- Abstract views: 102
- PDF Downloads: 3
- Cited By: 0