Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photon blockade effect from synergistic optical parametric amplification and driving force in Kerr-medium single-mode cavity

ZHANG Zhiqiang

Citation:

Photon blockade effect from synergistic optical parametric amplification and driving force in Kerr-medium single-mode cavity

ZHANG Zhiqiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an optical parametric amplifier (OPA).To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, which considers single-mode cavity decay. In order to obtain analytical solutions under optimal photon blockade conditions, the quantum state of the system is expanded to the two-photon level based on the Fock state, and the steady-state probability amplitudes are derived by solving the Schrödinger equation, thereby yielding analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system at appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.The numerical results show that the average photon number significantly increases under resonant conditions, providing theoretical support for optimizing single-photon source brightness, which is essential for achieving high-brightness single-photon sources.Furthermore, variations in the driving phase can cause the optimal photon blockade region to shift in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.Additionally, the influence of Kerr nonlinearity is examined. The results show that photon blockade persists robustly over a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the energy levels of the system, it does not affect the quantum interference pathways, thus keeping the photon blocking effect stable over a wide parameter range.
  • 图 1  等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随不同物理量之间的变化图像 (a) 等时二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$的对数值随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化, 其他参数设置为$\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$和${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$; (b) ${g^{\left( 2 \right)}}\left( 0 \right)$的对数值光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$和驱动力相位${\phi _a}$的变化关系图像, 其他参数设置为${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } = 0.1$和${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$. 两幅图中的白色虚线, 由方程(13)给出, 表示光子阻塞最佳条件的解析结果

    Figure 1.  Logarithmic value of the equal-time second-order correlation function $ {g^{\left( 2 \right)}}\left( 0 \right) $ versus different physical parameters are presented: (a) Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier, where c and ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$; (b) logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ and the driving phase $ \phi $, where ${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } = 0.1$ and ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$. In both figures, the white dashed lines, derived from Eq. (13), indicate the analytical solutions corresponding to the optimal conditions for photon blockade.

    图 2  系统的平均光子数的对数$ \lg \left[ N \right] $随不同参数的变化 (a) 不同驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化; (b) 不同光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随驱动力相位$\phi $的变化; (c) 不同光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化; (d) 不同克尔非线性强${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$下, $ \lg \left[ N \right] $随失谐量${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$的变化

    Figure 2.  Logarithmic value of the average photon number $ N $ versus different parameters: (a) $ \lg \left[ N \right] $ as a function of detuning ${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$ at different driving strengths ${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$; (b) phase dependence of $ \lg \left[ N \right] $ under varying of the optical parametric amplifier nonlinear coefficients ${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$; (c) detuning dependence of $ \lg \left[ N \right] $ for different optical parametric amplifier nonlinear coefficients ${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$; (d) $ \lg \left[ N \right] $ versus detuning ${\Delta \mathord{\left/ {\vphantom {\Delta \kappa }} \right. } \kappa }$ at distinct Kerr nonlinearity strengths ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$.

    图 3  不同驱动力相位$\phi $情况下, 等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化 (a) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$; (b) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 6}} \right. } 6}$; (c) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 4}} \right. } 4}$; (d) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 3}} \right. } 3}$; (e) $\phi = {{{{5\pi }}} \mathord{\left/ {\vphantom {{{{5\pi }}} {12}}} \right. } {12}}$; (f) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2}$. 图中的白色虚线由方程(13)给出, 表示光子阻塞最佳条件的解析结果. 克尔非线性强度均设置为${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$

    Figure 3.  Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier under different driving phases $\phi $: (a) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} {12}}} \right. } {12}}$; (b) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 6}} \right. } 6}$; (c) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 4}} \right. } 4}$; (d) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 3}} \right. } 3}$; (e) $\phi = {{{{5\pi }}} \mathord{\left/ {\vphantom {{{{5\pi }}} {12}}} \right. } {12}}$; (f) $\phi = {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2}$. In all panels, the white dashed lines, derived from Eq. (13), represent the analytical solutions for the optimal photon blockade conditions. The Kerr nonlinearity strength was consistently set to ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.5$ in the numerical simulations.

    图 4  不同克尔非线性强度${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$情况下, 等时二阶关联函数$ {g^{\left( 2 \right)}}\left( 0 \right) $的对数随驱动力强度${F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa }$和光学参量放大器非线性系数${G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa }$的变化图像 (a) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.1$; (b) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 1.0$; (c) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 2.0$; (d) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 5.0$. 图中的虚线由方程(13)给出, 表示光子阻塞最佳条件的解析结果

    Figure 4.  Logarithmic value of $ {g^{\left( 2 \right)}}\left( 0 \right) $ as a function of the driving strength $ {F \mathord{\left/ {\vphantom {F \kappa }} \right. } \kappa } $ and the nonlinear coefficient $ {G \mathord{\left/ {\vphantom {G \kappa }} \right. } \kappa } $ of the optical parametric amplifier under different Kerr nonlinearity strength ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa }$: (a) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 0.1$; (b) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 1.0$; (c) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 2.0$; (d) ${U \mathord{\left/ {\vphantom {U \kappa }} \right. } \kappa } = 5.0$. In all panels, the white dashed lines, derived from Eq. (13), represent the analytical solutions for the optimal photon blockade conditions.

    图 5  系统能级及不同光子态间跃迁路径的示意图 (a) 系统能级示意图; (b) 系统光子态跃迁路径示意图

    Figure 5.  Schematic diagram of the system energy-level and the transition paths between different photon states: (a) Energy level diagram; (b) photon state transition pathways.

  • [1]

    Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279Google Scholar

    [2]

    Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602Google Scholar

    [3]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [4]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601Google Scholar

    [5]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602Google Scholar

    [6]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387Google Scholar

    [7]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713Google Scholar

    [8]

    Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108Google Scholar

    [9]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643Google Scholar

    [10]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [11]

    Flayac H, Savona V 2017 Phys. Rev. A 96 053810Google Scholar

    [12]

    Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714Google Scholar

    [13]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715Google Scholar

    [14]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [16]

    李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203Google Scholar

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203Google Scholar

    [17]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601Google Scholar

    [18]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602Google Scholar

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [20]

    Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030Google Scholar

    [21]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [22]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [23]

    Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089Google Scholar

    [24]

    Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879Google Scholar

    [25]

    Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187Google Scholar

    [26]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707Google Scholar

    [27]

    Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304Google Scholar

    [28]

    Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123Google Scholar

    [29]

    Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203Google Scholar

    [30]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [31]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [32]

    Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707Google Scholar

    [33]

    Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204Google Scholar

    [34]

    Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021Google Scholar

    [35]

    Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029Google Scholar

    [36]

    Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202Google Scholar

    [37]

    Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714Google Scholar

    [38]

    Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424Google Scholar

    [39]

    Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818Google Scholar

    [40]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043Google Scholar

    [41]

    Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512Google Scholar

    [42]

    Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707Google Scholar

    [43]

    Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065

    [44]

    Tan S M 1999 J. Opt. B 1 424Google Scholar

    [45]

    Tan S M Quantum Optics Toolbox for MATLAB [2012-12-21]

    [46]

    张志强 2025 激光与光电子学进展 62 0719001Google Scholar

    Zhang Z Q 2025 Laser Optoelectron. Prog. 62 0719001Google Scholar

    [47]

    Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723Google Scholar

    [48]

    Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402Google Scholar

    [49]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601Google Scholar

  • [1] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, doi: 10.7498/aps.71.20220691
    [2] Liu Xue-Ying, Cheng Shu-Jie, Gao Xian-Long. The photon blockade effect of a complete Buck-Sukumar model. Acta Physica Sinica, doi: 10.7498/aps.70.20220238
    [3] Chen Hai-Xia, Lin Shu-Yu. Nonlinear propagation and parameters excitation of ultrasound. Acta Physica Sinica, doi: 10.7498/aps.70.20202093
    [4] Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Design of optical parametric cavity for broadband squeezed light field. Acta Physica Sinica, doi: 10.7498/aps.69.20200890
    [5] Li Hong, Zhang Si-Qi, Guo Ming, Li Mei-Xuan, Song Li-Jun. Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system. Acta Physica Sinica, doi: 10.7498/aps.68.20190154
    [6] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, doi: 10.7498/aps.64.094203
    [7] Luo Yao-Tian, Tang Chang-Jian. Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity. Acta Physica Sinica, doi: 10.7498/aps.60.014104
    [8] Deng Qing-Hua, Ding Lei, He Shao-Bo, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Dong Yi-Fang. Methods for determining and detuning the length of nonlinear crystal in optical pulse chirped amplifier. Acta Physica Sinica, doi: 10.7498/aps.59.2525
    [9] Lai Bo-Hui, Du Gang, Yu Ya-Fei, Zhang Zhi-Ming, Liu Song-Hao. Generation of four-photon polarization-entangled cluster states via cross-Kerr nonlinearity. Acta Physica Sinica, doi: 10.7498/aps.59.1017
    [10] Yang Jian, Ren Min, Yu Ya-Fei, Zhang Zhi-Ming, Liu Song-Hao. Entanglement transfer via cross-Kerr nonlinearity. Acta Physica Sinica, doi: 10.7498/aps.57.887
    [11] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, doi: 10.7498/aps.56.2709
    [12] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, doi: 10.7498/aps.55.1153
    [13] Deng Cheng-Xian, Li Zheng-Jia, Zhu Chang-Hong. Singly resonant optical parametric oscillator with intracavity optical amplification. Acta Physica Sinica, doi: 10.7498/aps.54.4754
    [14] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, doi: 10.7498/aps.53.620
    [15] Kang Yan-Mei, Xu Jian-Xue, Xie Yong. Relaxation rate and stochastic resonance of a single-mode nonlinear optical syst em. Acta Physica Sinica, doi: 10.7498/aps.52.2712
    [16] Sun Tao, Huang Jin-Sheng, Zhang Wei-Li, Wang Qing-Yue. . Acta Physica Sinica, doi: 10.7498/aps.51.2281
    [17] LIU HONG-JUN, CHEN GUO-FU, ZHAO WEI, WANG YI-SHAN, ZHAO SHANG-HONG. OPTIMIZED DESIGN OF A SYSTEM OF GENERATING TERAWATT LASER PULSES BY USE OF OPTICAL PARAMETRIC CHIRPED PULSE AMPLIFICATION. Acta Physica Sinica, doi: 10.7498/aps.50.1717
    [18] WANG HAI, HAO JIANG-RUI, XIE CHENG-DE, PENG FANG-XI. . Acta Physica Sinica, doi: 10.7498/aps.44.1563
    [19] LIU ZHENG-DONG. CONDITION OF GENERATING PHOTON NUMBER STATE IN OPTICAL CAVITY. Acta Physica Sinica, doi: 10.7498/aps.40.210
    [20] ZHAO YONG, HUO YU-PING. NEW BEHAVIORS OF BIFURCATION AND CHAOS IN A NONLINEAR OPTICAL RING CAVITY. Acta Physica Sinica, doi: 10.7498/aps.36.909
Metrics
  • Abstract views:  391
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2025
  • Accepted Date:  10 June 2025
  • Available Online:  12 June 2025
  • /

    返回文章
    返回