Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photon Blockade in a Kerr Nonlinear Single-Mode Cavity with Optical Parametric Amplifier and Driving Field Synergy

Zhang Zhi-Qiang

Citation:

Photon Blockade in a Kerr Nonlinear Single-Mode Cavity with Optical Parametric Amplifier and Driving Field Synergy

Zhang Zhi-Qiang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • By combining analytical solutions and numerical simulations, we investigate the control mechanism of photon blockade effects in a hybrid quantum system consisting of a Kerr-medium single-mode cavity coupled with an Optical Parametric Amplifier (OPA).
    To study photon blockade in the system, the dynamics are described by a master equation derived from the effective Hamiltonian, accounting for single-mode cavity decay. To obtain analytical solutions for optimal photon blockade conditions, the quantum state of the system is expanded in the Fock state basis up to the two-photon level, and the steady-state probability amplitudes are derived by solving the Schrödinger equation. This yields analytical expressions for the optimal photon blockade regime. The results demonstrate that photon blockade can be achieved in the system under appropriate parameters. Comparative analysis shows excellent agreement between the analytical results and numerical simulations of the equal-time second-order correlation function, validating both the correctness of the analytical solutions and the effectiveness of photon blockade in the system.
    Numerical results demonstrate a significant enhancement in the average photon number under resonant conditions, providing theoretical support for optimizing singlephoton source brightness, which is essential for achieving high-brightness singlephoton sources.
    Furthermore, variations in the driving phase can induce displacement of the optimal photon blockade region in the two-dimensional parameter space of driving strength and OPA nonlinear coefficient, and even reverse the opening direction of the parabolic-shaped optimal blockade region. Both numerical and theoretical results confirm the regulatory effect of the driving phase on photon blockade.
    Additionally, the influence of Kerr nonlinearity is examined. Results show that photon blockade persists robustly across a broad range of Kerr nonlinear strengths, exhibiting universal characteristics.
    Physical mechanism analysis indicates that the photon blockade effect originates from destructive quantum interference between two photon transition pathways in the system under specific parameters, effectively suppressing two-photon excitation. Although Kerr nonlinearity modulates the system's energy levels, it does not affect the quantum interference pathways, enabling the photon blockade effect to remain stable across a wide parameter range.
  • [1]

    Zubizarreta Casalengua E, López Carreño J C, Laussy F P, Valle E D 2020 Laser Photonics Rev. 14 1900279

    [2]

    Lu Z G, Wu Y, Lü X Y 2025 Phys. Rev. Lett. 134 013602

    [3]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [4]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, Van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601

    [5]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602

    [6]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387

    [7]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713

    [8]

    Wang Z X, Yang H, Wang X Q, Lin H Y, Yao Z H 2023 Phys. Scr. 98 035108

    [9]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643

    [10]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802

    [11]

    Flayac H, Savona V 2017 Phys. Rev. A 96 053810

    [12]

    Shen H Z, Yang J F, Yi X X 2024 Phys. Rev. A 109 043714

    [13]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715

    [14]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601

    [15]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [16]

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203]

    [17]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601

    [18]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819

    [20]

    Zhu H Y, Li X M, Li Z G, Wang F, Zhong X L 2023 Opt. Express 31 22030

    [21]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808

    [22]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838

    [23]

    Zhou Y H, Liu T, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Yang C P 2024 Adv. Quantum Technol. 7 2400089

    [24]

    Chakram S, He K, Dixit A V, Oriani A E, Naik R K, Leung N, Kwon H, Ma W L, Jiang L, Schuster D I 2022 Nat. Phys. 18 879

    [25]

    Zhang W, Liu S T, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2300187

    [26]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707

    [27]

    Ding Z, Zhang Y 2022 Chin. Phys. B 31 070304

    [28]

    Li H, Liu M, Yang F, Zhang S, Ruan S 2023 Micromachines 14 2123

    [29]

    Luo Y, Zhang X Q, Xiao Y, Xu J P, Li H Z, Yang Y P, Xia X W 2025 Chin. Phys. B 34 14203

    [30]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601

    [31]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826

    [32]

    Jing Y W, Shi H Q, Xu X W 2021 Phys. Rev. A 104 033707

    [33]

    Zhang X Q, Xia X W, Xu J P, Li H Z, Fu Z Y, Yang Y P 2022 Chin. Phys. B 31 074204

    [34]

    Luan T Z, Yang J X, Wang J, Shen H Z, Zhou Y H, Yi X X 2023 Int. J. Quantum Inf. 21 2350021

    [35]

    Shen H Z, Luan T Z, Zhou Y H, Shi Z C, Yi X X 2023 Int. J. Quantum Inf. 21 2350029

    [36]

    Liu M Y, Gong Y, Chen J J, Wang Y W, Wei X 2025 Chin. Phys. B 34 57202

    [37]

    Wu S X, Gao X C, Cheng H H, Bai C H 2025 Phys. Rev. A 111 043714

    [38]

    Xue W S, Shen H Z, Yi X X 2020 Opt. Lett. 45 4424

    [39]

    Wang D Y, Bai C H, Liu S T, Zhang S, Wang H F 2019 Phys. Rev. A 99 043818

    [40]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043

    [41]

    Chen J J, Fan X G, Xiong W, Wang D, Ye L 2024 Phys. Rev. A 109 043512

    [42]

    Su X, Tang J S, Xia K Y 2022 Phys. Rev. A 106 063707

    [43]

    Xie H, He L W, Shang X, Lin X M 2024 Adv. Quantum Technol. 7 2400065

    [44]

    Tan S M 1999 J. Opt. B 1 424

    [45]

    Tan S M 2012-12-21 Quantum Optics Toolbox for MATLAB

    [46]

    Zhang Z Q. 2025 Laser & Optoelectronics Progress, 62 0719001 (in Chinese) [张志强 2025 激光与光电子学进展 62 0719001]

    [47]

    Zhang W, Hou R, Wang T, Liu S T, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723

    [48]

    Wang Y, Verstraelen W, Zhang B L, Liew T C H, Chong Y D 2021 Phys. Rev. Lett. 127 240402

    [49]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601

  • [1] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, doi: 10.7498/aps.71.20220691
    [2] Liu Xue-Ying, Cheng Shu-Jie, Gao Xian-Long. The photon blockade effect of a complete Buck-Sukumar model. Acta Physica Sinica, doi: 10.7498/aps.70.20220238
    [3] Chen Hai-Xia, Lin Shu-Yu. Nonlinear propagation and parameters excitation of ultrasound. Acta Physica Sinica, doi: 10.7498/aps.70.20202093
    [4] Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Design of optical parametric cavity for broadband squeezed light field. Acta Physica Sinica, doi: 10.7498/aps.69.20200890
    [5] Li Hong, Zhang Si-Qi, Guo Ming, Li Mei-Xuan, Song Li-Jun. Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system. Acta Physica Sinica, doi: 10.7498/aps.68.20190154
    [6] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, doi: 10.7498/aps.64.094203
    [7] Luo Yao-Tian, Tang Chang-Jian. Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity. Acta Physica Sinica, doi: 10.7498/aps.60.014104
    [8] Deng Qing-Hua, Ding Lei, He Shao-Bo, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Dong Yi-Fang. Methods for determining and detuning the length of nonlinear crystal in optical pulse chirped amplifier. Acta Physica Sinica, doi: 10.7498/aps.59.2525
    [9] Lai Bo-Hui, Du Gang, Yu Ya-Fei, Zhang Zhi-Ming, Liu Song-Hao. Generation of four-photon polarization-entangled cluster states via cross-Kerr nonlinearity. Acta Physica Sinica, doi: 10.7498/aps.59.1017
    [10] Yang Jian, Ren Min, Yu Ya-Fei, Zhang Zhi-Ming, Liu Song-Hao. Entanglement transfer via cross-Kerr nonlinearity. Acta Physica Sinica, doi: 10.7498/aps.57.887
    [11] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, doi: 10.7498/aps.56.2709
    [12] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, doi: 10.7498/aps.55.1153
    [13] Deng Cheng-Xian, Li Zheng-Jia, Zhu Chang-Hong. Singly resonant optical parametric oscillator with intracavity optical amplification. Acta Physica Sinica, doi: 10.7498/aps.54.4754
    [14] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Liu Zhi-Bo, Zhang Chun-Ping, Zhang Guang-Yin. Transient thermally induced optical nonlinearities in Kerr media. Acta Physica Sinica, doi: 10.7498/aps.53.620
    [15] Kang Yan-Mei, Xu Jian-Xue, Xie Yong. Relaxation rate and stochastic resonance of a single-mode nonlinear optical syst em. Acta Physica Sinica, doi: 10.7498/aps.52.2712
    [16] Sun Tao, Huang Jin-Sheng, Zhang Wei-Li, Wang Qing-Yue. . Acta Physica Sinica, doi: 10.7498/aps.51.2281
    [17] LIU HONG-JUN, CHEN GUO-FU, ZHAO WEI, WANG YI-SHAN, ZHAO SHANG-HONG. OPTIMIZED DESIGN OF A SYSTEM OF GENERATING TERAWATT LASER PULSES BY USE OF OPTICAL PARAMETRIC CHIRPED PULSE AMPLIFICATION. Acta Physica Sinica, doi: 10.7498/aps.50.1717
    [18] WANG HAI, HAO JIANG-RUI, XIE CHENG-DE, PENG FANG-XI. . Acta Physica Sinica, doi: 10.7498/aps.44.1563
    [19] LIU ZHENG-DONG. CONDITION OF GENERATING PHOTON NUMBER STATE IN OPTICAL CAVITY. Acta Physica Sinica, doi: 10.7498/aps.40.210
    [20] ZHAO YONG, HUO YU-PING. NEW BEHAVIORS OF BIFURCATION AND CHAOS IN A NONLINEAR OPTICAL RING CAVITY. Acta Physica Sinica, doi: 10.7498/aps.36.909
Metrics
  • Abstract views:  102
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  12 June 2025

/

返回文章
返回