-
193 nm波长浸没式步进扫描投影光刻机是实现45 nm及以下技术节点集成电路制造的核心装备. 增大数值孔径是提高光刻分辨率的有效途径, 而大数值孔径曝光系统的偏振性能严重影响光刻成像质量. 光刻机曝光系统偏振参数的高精度检测是对其进行有效调控的前提. 基于光栅的偏振检测技术能实现浸没式光刻机偏振检测装置的小型化, 满足其快速、高精度在线检测的需求, 该技术中的关键部件是结构紧凑且偏振性能良好的光栅. 本文基于反常偏振效应和双层金属光栅对TE偏振光的透射增强原理, 采用严格耦合波理论和有限时域差分方法, 设计了一种双层金属光栅偏振器. 计算了该偏振器的初始结构参数, 并通过数值仿真得到了其偏振性能关于各光栅参数的变化关系. 仿真结果表明, 中间层高度是影响TE偏振光透射增强的主要因素; 垂直入射时TE偏振光的透过率可达到56.8%, 消光比高达65.6 dB. 与现有同波段金属光栅偏振器相比, 所设计的光栅偏振器在保证高透过率的同时, 消光比提升了四个数量级.The 193-nm immersion step-and-scan projection lithography tool is the most critical equipment in the high-volume manufacturing of integrated circuit with 45nm technology nodes and beyond. With the increase of numerical aperture (NA) of the projection lens, the resolution of lithography tool can be enhanced effectively. However, the polarization effect of the optics in an exposure system is more significant in high NA immersion lithography, which influences the lithographic imaging quality greatly. Thus, the polarization parameters of the immersion exposure system should be controlled -accurately for ensuring the lithographic imaging quality. With the advantages of miniaturization and high-accuracy online detection, the grating is applied to the polarization detection of the immersion lithography tools. A bilayer metallic grating polarizer with compact structure and excellent polarization performance is designed based on the inverse polarization effect and transmission enhancement effect on TE-polarized light. Rigorous coupled-wave theory and finite-different time-domain method are used to design the bilayer metallic grating polarizer. The former is used for analyzing the initial structure parameters of the grating, and the latter is used for acquiring the cross-sectional electromagnetic field of the structure. The initial parameters of the grating are calculated based on the surface plasmons resonance and Fabry-Perot-like theory. The influence of geometrical parameters of the grating on its polarization performance is analyzed. The simulation results show that the enhancement of TE-polarized light transmittance is mainly modulated by the middle layer height of the grating. Firstly, the TE-polarized light transmission is enhanced by the standing wave in the bottom medium cavity, and further enhanced by the top optical funnel formed. However, the transmission suppression of TM-polarized light is mainly caused by the low frequency mode of charge movement formed by surface plasmons. For the designed grating polarizer, the transmittance of TE-polarized light is 56.8%, and the extinction ratio is 65.6 dB at normal incidence. Comparing with previous metal grating polarizer, the extinction ratio of the designed grating is increased by four orders of magnitude.
-
Keywords:
- bilayer metallic grating /
- polarization measurement /
- deep ultraviolet /
- immersion lithography tool
[1] Bruce W S, Cashmore J S 2002 Proceedings of the Society of Photo-Optical Instrumentation Engineers Santa Clara, CA, March 5–8, 2002 p11
[2] Wim de B, Geert S, Nicolas L M, Armand K, Henk van G, Michel K, Mark K, Koen I S, Laurens de W, Martijn W, Steve H, Christian W 2006 Optical Microlithography XIX San Jose, CA, February 21–24, 2006 61540 B
[3] Jia Y, Li Y Q, Liu L H, Han C Y, Liu X L 2014 7 th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Design Manufacturing, and Testing of Micro- and Nano-Optical Devices, and Systems Harbin, Peoples R China, April 26–29, 2014 928309
[4] Xu S, Tao B, Guo Y X, Li G F 2019 Opt. Eng. 58 082405Google Scholar
[5] Toru F, Naonori K, Yasushi M 2005 Proceedings of the Society of Photo-Optical Instrumentation Engineers San Jose, CA, February 28–March 3, 2005 p846
[6] ASML Netherlands B V 2005 U.S. Patent 7375799 B2
[7] Canon Kabushiki K 2009 U.S. Patent 7525656
[8] Li L, Li, Y Q, Chi Q, Liu K, Zhang X B, Li J H 2014 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Optical Test and Measurement Technology and Equipment Harbin, Peoples R China, April 26–29, 2014 928232
[9] Xu M, Urbach H P, Bore D K G, Cornelissen H J 2005 Opt. Express 13 2303Google Scholar
[10] Sasaki T, Kushida H, Sakamoto K, Noda K, Okamoto H, Kawatsuki N, Ono H 2019 Opt. Commun. 431 63Google Scholar
[11] Nguyen D M, Lee D, Rho J 2017 Sci. Rep. 7 2611Google Scholar
[12] Thomas W, Thomas K, Michael H, Ernst B K, Andreas T 2012 Appl. Opt. 51 3224Google Scholar
[13] Kosuke A, Satoshi Y, Atsushi K, Toyohiko Y 2014 Appl. Opt. 53 2942Google Scholar
[14] Thomas S, Stefanie K, Kristin P, Oliver P, Kay D, Daniel F, Ivan O, Adriana S, Ernst-Bernhard K, Andreas T 2016 Adv. Opt. Mater. 4 1780Google Scholar
[15] Honkanen M, Kettunen V, Kuittinen M, Lautanen J, Turunen J, Schnabel B, Wyrowski F 1999 Appl. Phys. B 68 81Google Scholar
[16] Kang G G, Vartiainen I, Bai B F, Tuovinen H, Turunen J 2011 Appl. Phys. Lett. 99 071103Google Scholar
[17] Kang G G, Rahom€aki J, Dong J, Honkanen S, Turunen J 2013 Appl. Phys. Lett. 103 131110Google Scholar
[18] 张冲, 胡敬佩, 周如意, 刘铁诚, Sergey Avakaw, 曾爱军, 黄惠杰 2019 中国激光 47 49Google Scholar
Zhang C, Hu J P, Zhou R Y, Liu T C, Sergey A, Zeng A J, Huang H J 2019 Chin. J. Lasers 47 49Google Scholar
[19] Yu Z N, Deshpande P, Wu W, Wang J, Chou S Y 2000 Appl. Phys. Lett. 77 927Google Scholar
[20] Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323Google Scholar
[21] 褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206Google Scholar
Chu J K, Wang Q Y, Wang Z W, Wang LD 2015 Acta Phys. Sin. 64 164206Google Scholar
[22] Hwang B J, Oh B, Kim Y, Silva S, Kim J O, Czaplewski D A, Ryu J E, Kim E K, Urbas A, Zhou J F, Ku Z, Lee S J 2018 Sci. Rep. 8 14787Google Scholar
[23] Wu C L, Hsueh C H, Li J H 2019 Opt. Express 27 1660Google Scholar
[24] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wol P A 1998 Nature 391 667Google Scholar
[25] 谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar
Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar
[26] Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403Google Scholar
[27] 褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar
Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar
[28] Crouse D, Keshavareddy P 2005 Opt. Express 13 7760Google Scholar
[29] Yaremchuk Y, Fitio V, Bobitski Y 2017 Semicond. Phys. Quantum Electron. Optoelectron. 20 85Google Scholar
[30] Li S, Huang L, Ling Y H, Liu W B, Ba C F, Li H H 2019 Sci. Rep. 9 17117Google Scholar
[31] Homola J, Koudela I, Yee S S 1999 Sens. Actuators, B: Chem. 54 16Google Scholar
[32] Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331Google Scholar
[33] Wang B, Wang G P 2005 Appl. Phys. Lett. 87 013107Google Scholar
[34] Xie Y, Zakharian R A, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485Google Scholar
[35] Borisov A G, García de Abajo F J, Shabanov S V 2005 Phys. Rev. Lett. 71 075408Google Scholar
[36] Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar
[37] Schouten H F, Visser T D, Lenstra D, Blok H 2003 Phys. Rev. E 67 036608Google Scholar
[38] 周云, 申溯, 叶燕, 浦东林, 陈林森 2010 光学学报 30 1158Google Scholar
Zhou Y, Shen S, Ye Y, Pu D L, Chen L S 2010 Acta Optic. Sin. 30 1158Google Scholar
[39] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 物理学报 59 4030Google Scholar
Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030Google Scholar
[40] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 物理学报 60 024217Google Scholar
Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217Google Scholar
[41] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
-
图 8 TM偏振光正入射时光栅截面场分布 (a) 瞬时(箭头)和时间平均电场分布; (b) 坡印廷矢量方向(箭头)和幅度(颜色图)
Fig. 8. Field distribution of grating cross-section when TM-polarized light is incident normally: (a) Instantsneous (arrowheads) and time-averaged (color map) electric field distribution; (b) Poynting vector direction (arrowheads) and magnitude (color map).
图 9 光栅的工艺容差分析 (a), (b)为占空比和金属层高度分别对TE透过率和消光比的影响; (c), (d)为占空比和中间层高度分别对TE透过率和消光比的影响; (e), (f)为金属层和中间层高度分别对TE透过率和消光比的影响
Fig. 9. Fabrication tolerance analysis of grating: (a) and (b) are TE transmission and extinction ratio as function of the grating duty cycle and metal layer height, respectively; (c) and (d) are TE transmission and extinction ratio as function of the grating duty cycle and middle layer height, respectively; (e) and (f) are TE transmission and extinction ratio as function of the grating metal layer height and middle layer height, respectively.
-
[1] Bruce W S, Cashmore J S 2002 Proceedings of the Society of Photo-Optical Instrumentation Engineers Santa Clara, CA, March 5–8, 2002 p11
[2] Wim de B, Geert S, Nicolas L M, Armand K, Henk van G, Michel K, Mark K, Koen I S, Laurens de W, Martijn W, Steve H, Christian W 2006 Optical Microlithography XIX San Jose, CA, February 21–24, 2006 61540 B
[3] Jia Y, Li Y Q, Liu L H, Han C Y, Liu X L 2014 7 th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Design Manufacturing, and Testing of Micro- and Nano-Optical Devices, and Systems Harbin, Peoples R China, April 26–29, 2014 928309
[4] Xu S, Tao B, Guo Y X, Li G F 2019 Opt. Eng. 58 082405Google Scholar
[5] Toru F, Naonori K, Yasushi M 2005 Proceedings of the Society of Photo-Optical Instrumentation Engineers San Jose, CA, February 28–March 3, 2005 p846
[6] ASML Netherlands B V 2005 U.S. Patent 7375799 B2
[7] Canon Kabushiki K 2009 U.S. Patent 7525656
[8] Li L, Li, Y Q, Chi Q, Liu K, Zhang X B, Li J H 2014 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Optical Test and Measurement Technology and Equipment Harbin, Peoples R China, April 26–29, 2014 928232
[9] Xu M, Urbach H P, Bore D K G, Cornelissen H J 2005 Opt. Express 13 2303Google Scholar
[10] Sasaki T, Kushida H, Sakamoto K, Noda K, Okamoto H, Kawatsuki N, Ono H 2019 Opt. Commun. 431 63Google Scholar
[11] Nguyen D M, Lee D, Rho J 2017 Sci. Rep. 7 2611Google Scholar
[12] Thomas W, Thomas K, Michael H, Ernst B K, Andreas T 2012 Appl. Opt. 51 3224Google Scholar
[13] Kosuke A, Satoshi Y, Atsushi K, Toyohiko Y 2014 Appl. Opt. 53 2942Google Scholar
[14] Thomas S, Stefanie K, Kristin P, Oliver P, Kay D, Daniel F, Ivan O, Adriana S, Ernst-Bernhard K, Andreas T 2016 Adv. Opt. Mater. 4 1780Google Scholar
[15] Honkanen M, Kettunen V, Kuittinen M, Lautanen J, Turunen J, Schnabel B, Wyrowski F 1999 Appl. Phys. B 68 81Google Scholar
[16] Kang G G, Vartiainen I, Bai B F, Tuovinen H, Turunen J 2011 Appl. Phys. Lett. 99 071103Google Scholar
[17] Kang G G, Rahom€aki J, Dong J, Honkanen S, Turunen J 2013 Appl. Phys. Lett. 103 131110Google Scholar
[18] 张冲, 胡敬佩, 周如意, 刘铁诚, Sergey Avakaw, 曾爱军, 黄惠杰 2019 中国激光 47 49Google Scholar
Zhang C, Hu J P, Zhou R Y, Liu T C, Sergey A, Zeng A J, Huang H J 2019 Chin. J. Lasers 47 49Google Scholar
[19] Yu Z N, Deshpande P, Wu W, Wang J, Chou S Y 2000 Appl. Phys. Lett. 77 927Google Scholar
[20] Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323Google Scholar
[21] 褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206Google Scholar
Chu J K, Wang Q Y, Wang Z W, Wang LD 2015 Acta Phys. Sin. 64 164206Google Scholar
[22] Hwang B J, Oh B, Kim Y, Silva S, Kim J O, Czaplewski D A, Ryu J E, Kim E K, Urbas A, Zhou J F, Ku Z, Lee S J 2018 Sci. Rep. 8 14787Google Scholar
[23] Wu C L, Hsueh C H, Li J H 2019 Opt. Express 27 1660Google Scholar
[24] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wol P A 1998 Nature 391 667Google Scholar
[25] 谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar
Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar
[26] Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403Google Scholar
[27] 褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar
Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar
[28] Crouse D, Keshavareddy P 2005 Opt. Express 13 7760Google Scholar
[29] Yaremchuk Y, Fitio V, Bobitski Y 2017 Semicond. Phys. Quantum Electron. Optoelectron. 20 85Google Scholar
[30] Li S, Huang L, Ling Y H, Liu W B, Ba C F, Li H H 2019 Sci. Rep. 9 17117Google Scholar
[31] Homola J, Koudela I, Yee S S 1999 Sens. Actuators, B: Chem. 54 16Google Scholar
[32] Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331Google Scholar
[33] Wang B, Wang G P 2005 Appl. Phys. Lett. 87 013107Google Scholar
[34] Xie Y, Zakharian R A, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485Google Scholar
[35] Borisov A G, García de Abajo F J, Shabanov S V 2005 Phys. Rev. Lett. 71 075408Google Scholar
[36] Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar
[37] Schouten H F, Visser T D, Lenstra D, Blok H 2003 Phys. Rev. E 67 036608Google Scholar
[38] 周云, 申溯, 叶燕, 浦东林, 陈林森 2010 光学学报 30 1158Google Scholar
Zhou Y, Shen S, Ye Y, Pu D L, Chen L S 2010 Acta Optic. Sin. 30 1158Google Scholar
[39] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 物理学报 59 4030Google Scholar
Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030Google Scholar
[40] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 物理学报 60 024217Google Scholar
Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217Google Scholar
[41] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
计量
- 文章访问数: 7339
- PDF下载量: 188
- 被引次数: 0