Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological selective non hermitian skin effect

YANG Xing LIU Mengjiao HOU Jiahao LI Tianyue WANG Shuming

Citation:

Topological selective non hermitian skin effect

YANG Xing, LIU Mengjiao, HOU Jiahao, LI Tianyue, WANG Shuming
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Topologically protected waveguides have attracted growing interest due to their robustness against disorder and defects. In parallel, the advent of non-Hermitian physics—with its inherent gain-and-loss mechanisms—has introduced new tools for manipulating wave localization and transport. However, most attempts to combine non-Hermitian effects with topological systems impose the non-Hermitian skin effect (NHSE) uniformly on all modes, lacking selectivity for topological states.
    In this work, we propose a scheme that realizes a topologically selective NHSE by combining sub-symmetry-protected boundary modes with long-range, non-reciprocal couplings. In a modified Su–Schrieffer–Heeger (SSH) chain, we analytically demonstrate that even in a spectrum densely populated with bulk states, a robust zero-energy edge mode can be preserved while the NHSE is selectively applied to the trivial bulk modes, achieving spatial separation between topological and bulk states. By tuning the long-range couplings, we observe a non-Hermitian phase transition in the complex energy spectrum: it evolves from a closed loop (circle), to an arc, and then to a loop with reversed winding direction. These transitions correspond to a leftward NHSE, the disappearance of the NHSE, and a rightward NHSE, respectively. Calculating the generalized Brillouin zone (GBZ), we confirm this transition by observing the GBZ crossing the unit circle, indicating a change in the NHSE direction.
    We further extend our model to a two-dimensional higher-order SSH lattice, where selective non-Hermitian modulation enables clear spatial separation between topological corner states and bulk modes. To quantify this, we compute the local density of states (LDOS) in the complex energy plane for site 0 (a topologically localized corner) and site 288 (a region exhibiting NHSE). The LDOS comparison reveals that the topological states are primarily localized at site 0, while bulk states affected by NHSE accumulate at site 288.
    To validate the theoretical predictions, we perform finite-element simulations of optical resonator arrays employing whispering-gallery modes. By tuning the coupling distances and incorporating gain/loss through refractive index engineering, we replicate the modified SSH model and confirm the selective localization of topological and bulk modes.
    Our results demonstrate a robust method for the selective excitation and spatial control of topological states in non-Hermitian systems, providing a foundation for future low-crosstalk, high-stability topological photonic devices.
  • [1]

    Su W P, Schrieffer J R, Heeger A J 1979 Physical Review Letters 421698

    [2]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461772

    [3]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nature Physics 7907

    [4]

    Fang K, Yu Z, Fan S 2012 Nature Photonics 6782

    [5]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nature Photonics 71001

    [6]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nature Materials 12233

    [7]

    Wu L H, Hu X 2015 Physical Review Letters 114223901

    [8]

    Ma T, Shvets G 2016 New Journal of Physics 18025012

    [9]

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Physica Sinica 73064201(in Chinese) [王子尧, 陈福家, 郗翔, 高振, 杨怡豪2024物理学报73064201]

    [10]

    Wang H F, Xie B Y, Zhan P, Lu M H, Chen Y F 2019 Acta Physica Sinica 68224206(in Chinese) [王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰2019物理学报68, 224206]

    [11]

    Xiao-Chen S, Cheng H, Ming-Hui L, Yan-Feng C 2017 Acta Physica Sinica 66224203(in Chinese) [孙晓晨, 何程, 卢明辉, 陈延峰2017物理学报66224203]

    [12]

    Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M, Chen Y 2021 Nature Reviews Physics 3520

    [13]

    Benalcazar W A, Noh J, Wang M, Huang S, Chen K P, Rechtsman M C 2022 Physical Review B 105195129

    [14]

    Wang Q, Xue H, Zhang B, Chong Y 2020 Physical Review Letters 124243602

    [15]

    Hu J R, Kong P, Bi R G, Deng K, Zhao H P 2022 Acta Physica Sinica 71054301(in Chinese) [胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平2022物理学报71054301]

    [16]

    Yan Z B 2019 Acta Physica Sinica 68226101(in Chinese) [严忠波2019物理学报68226101]

    [17]

    Wang Z, Wang X, Hu Z, Bongiovanni D, Jukić D, Tang L, Song D, Morandotti R, Chen Z, Buljan H 2023 Nature Physics 1

    [18]

    Bender C M, Boettcher S 1998 Physical Review Letters 805243

    [19]

    Bender C M 2007 Reports on Progress in Physics 70947

    [20]

    Bender C, Boettcher S, Meisinger P 1999 Journal of Mathematical Physics 402201

    [21]

    Yao S, Wang Z 2018 Physical Review Letters 121086803

    [22]

    Lee T E 2016 Physical Review Letters 116133903

    [23]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Physical Review Letters 124086801

    [24]

    Song W, Sun W, Chen C, Song Q, Xiao S, Zhu S, Li T 2019 Physical Review Letters 123165701

    [25]

    Li Y, Liang C, Wang C, Lu C, Liu Y C 2022 Physical Review Letters 128223903

    [26]

    Wang W, Wang X, Ma G 2022 Nature 60850

    [27]

    Zhu W, Gong J 2022 Physical Review B 106035425

    [28]

    Liu G G, Mandal S, Zhou P, Xi X, Banerjee R, Hu Y H, Wei M, Wang M, Wang Q, Gao Z, Chen H, Yang Y, Chong Y, Zhang B 2024 Physical Review Letters 132113802

    [29]

    Song W, Lin Z, Ji J, Sun J, Chen C, Wu S, Huang C, Yuan L, Zhu S, Li T 2024 Physical Review Letters 132143801

    [30]

    Chen J, Shi A, Peng Y, Peng P, Liu J 2024 Chin. Phys. Lett. 41

    [31]

    Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Physical Review B 97121401

    [32]

    Pan M, Zhao H, Miao P, Longhi S, Feng L 2018 Nature Communications 91308

    [33]

    Huang Q K L, Liu Y K, Cao P C, Zhu X F, Li Y 2023 Chinese Physics Letters 40106601

    [34]

    Leykam D, Bliokh K Y, Huang C, Chong Y, Nori F 2017 Physical Review Letters 118040401

    [35]

    Liu X, Lin Z, Song W, Sun J, Huang C, Wu S, Xiao X, Xin H, Zhu S, Li T 2024 Physical Review Letters 132016601

    [36]

    Jackiw R, Rebbi C 1976 Physical Review D 133398

    [37]

    Qi X L, Wu Y S, Zhang S C 2006 Physical Review B 74045125

    [38]

    Zhang K, Yang Z, Fang C 2020 Physical Review Letters 125126402

    [39]

    Yang Z, Zhang K, Fang C, Hu J 2020 Physical Review Letters 125226402

    [40]

    Wang Z, Wang X, Li A, Zhang K, Ji Y, Zhong M 2023 Chinese Physics B 32064207

    [41]

    Chen Y T, Wang J W, Chen W J, Xu J 2020 Acta Physica Sinica 69154206(in Chinese) [陈云天, 王经纬, 陈伟锦, 徐竞2020物理学报69154206]

    [42]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Reviews of Modern Physics 91015006

    [43]

    Yan Q C, Ma R, Hu X Y, Gong Q H 2023 Chinese Physics B 33010301

    [44]

    Xu Y X, Tang W J, Jiang L W, Wu D X, Wang H, Xu B C, Chen L 2024 Chinese Physics B 33060306

    [45]

    Wu D, Chen J, Su W, Wang R, Wang B, Xing D Y 2023 Communications Physics 61

    [46]

    Xu X W, Li Y Z, Liu Z F, Chen A X 2020 Physical Review A 101063839

  • [1] ZENG Ran, FANG Shichao, GAO Taiji, LI Haozhen, YANG Shuna, YANG Yaping. Casimir effect in photonic topological insulator multilayered system. Acta Physica Sinica, doi: 10.7498/aps.74.20250088
    [2] Wang Li-Kai, Wang Yu-Qian, Guo Zhi-Wei, Jiang Hai-Tao, Li Yun-Hui, Yang Ya-Ping, Chen Hong. Research progress of magnetic resonance wireless power transfer based on higher-order non-Hermitian physics. Acta Physica Sinica, doi: 10.7498/aps.73.20241079
    [3] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, doi: 10.7498/aps.73.20240976
    [4] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, doi: 10.7498/aps.73.20231519
    [5] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, doi: 10.7498/aps.73.20231711
    [6] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, doi: 10.7498/aps.73.20231850
    [7] Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin. Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain. Acta Physica Sinica, doi: 10.7498/aps.72.20231286
    [8] Wang Zhen-Yu, Li Zhi-Xiong, Yuan Huai-Yang, Zhang Zhi-Zhi, Cao Yun-Shan, Yan Peng. Topological states and quantum effects in magnonics. Acta Physica Sinica, doi: 10.7498/aps.72.20221997
    [9] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, doi: 10.7498/aps.71.20220796
    [10] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, doi: 10.7498/aps.71.20221151
    [11] Chen Shu-Yue, Jiang Chuang, Ke Shao-Lin, Wang Bing, Lu Pei-Xiang. Suppression of non-Hermitian skin effect via Aharonov-Bohm cage. Acta Physica Sinica, doi: 10.7498/aps.71.20220978
    [12] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, doi: 10.7498/aps.71.20221087
    [13] Sun Kong-Hao, Yi Wei. Dynamics of non-Hermitian local topological marker. Acta Physica Sinica, doi: 10.7498/aps.70.20211576
    [14] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, doi: 10.7498/aps.68.20191098
    [15] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, doi: 10.7498/aps.68.20190112
    [16] Mei Yu-Han, Shao Yue, Hang Zhi-Hong. Microwave experimental platform to demonstrate topology physics based on tight-binding model. Acta Physica Sinica, doi: 10.7498/aps.68.20191452
    [17] Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng. Research progress of topological photonics. Acta Physica Sinica, doi: 10.7498/aps.68.20191437
    [18] Zhang Hao, Chang Chen-Liang, Xia Jun. Detection optical vortex topological charges with monocyclic multistage intensity distribution. Acta Physica Sinica, doi: 10.7498/aps.65.064101
    [19] Zhu Yong-Zheng, Yin Ji-Qiu, Qiu Ming-Hui. Non-close-packed photonic crystal of TiO2 hollow spheres: Fabrication and photonic bandgap calculation. Acta Physica Sinica, doi: 10.7498/aps.57.7725
    [20] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, doi: 10.7498/aps.57.6419
Metrics
  • Abstract views:  21
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 May 2025

/

返回文章
返回