Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of topological photonics

Wang Hong-Fei Xie Bi-Ye Zhan Peng Lu Ming-Hui Chen Yan-Feng

Citation:

Research progress of topological photonics

Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng
PDF
HTML
Get Citation
  • Inspired by topological phases and phase transitions in condensed matter, a new research field based on topological band theory, topological photonics, has emerged. It breaks through the traditional idea of light regulation by optical superposition principle of real space and energy band theory of solids of reciprocal space, providing a novel mechanism of optical regulation and rich properties of transport and light manipulation. Such as transmission properties of against backscattering and rubout to defects and disorders, selective transports dependent on spin-orbit coupling, and high dimensional manipulation of light. This review paper classifies different topological photonic systems by dimensions, briefly introducing the topological model, the novel physical phenomena, and the corresponding physical picture, such as SSH models, photonic quantum Hall effects, photonic quantum spin Hall effects, photonic Floquet topological insulator, and photonic three-dimensional topological insulator; other advanced platforms such as higher-order, non-Hermitian, and nonlinear topological platforms are also involved; a summary and outlook about the current development, advantages, and challenges of this field are present in the end.
      Corresponding author: Lu Ming-Hui, luminghui@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306200, 2017YFA0303702), the National Natural Science Foundation of China (Grant Nos. 11474158, 51732006, 11890700), and the National Science Fund for Distinguished Young Scholars of China (Grant No.11625418)
    [1]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljacic M 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [5]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [6]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [7]

    Nalitov A V, Malpuech G, Tercas H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [8]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [9]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [10]

    Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S 2019 Phys. Rev. B 99 195133Google Scholar

    [11]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [12]

    Titum P, Lindner N H, Rechtsman M C, Refael G 2015 Phys. Rev. Lett. 114 056801Google Scholar

    [13]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [14]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Ohberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [15]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [16]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [17]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 243905Google Scholar

    [18]

    Mukherjee S, Chandrasekharan H K, Ohberg P, Goldman N, Thomson R R 2018 Nat. Commun. 9 4209Google Scholar

    [19]

    Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C 2018 Phys. Rev. A 98 013855Google Scholar

    [20]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [21]

    Chen Y, Chen H, Cai G 2018 Appl. Phys. Lett. 112 013504Google Scholar

    [22]

    Hafezi M, Lukin M D, Taylor J M 2013 New J. Phys. 15 063001Google Scholar

    [23]

    Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C 2016 Phys. Rev. Lett. 116 143601Google Scholar

    [24]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [25]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [26]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [27]

    Kohmoto M 1985 Ann. Phys. 160 343Google Scholar

    [28]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [29]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [30]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [31]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [32]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [33]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [34]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [35]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [36]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [37]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [38]

    Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F 2018 Phys. Rev. B 98 214101Google Scholar

    [39]

    Qi B, Zhang L, Ge L 2018 Phys. Rev. Lett. 120 093901Google Scholar

    [40]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [41]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [42]

    Midya B, Zhao H, Feng L 2018 Nat. Commun. 9 2674Google Scholar

    [43]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [44]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [45]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F 2018 arXiv preprint arXiv: 1803.00794

    [46]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [47]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [48]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402Google Scholar

    [51]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [52]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [53]

    Haddad L H, Weaver C M, Carr L D 2015 New J. Phys. 17 063033Google Scholar

    [54]

    Soljačić M, Luo C, Joannopoulos J D, Fan S 2003 Opt. Lett. 28 637Google Scholar

    [55]

    Berger V 1998 Phys. Rev. Lett. 81 4136Google Scholar

    [56]

    Adair R, Chase L L, Payne S A 1989 Phys. Rev. B 39 3337Google Scholar

    [57]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [58]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [59]

    Rajesh C, Georgios T 2019 arXiv: 1904.09466 v1

    [60]

    Hadad Y, Khanikaev A B, Alù A 2016 Phys. Rev. B 93 155112Google Scholar

    [61]

    Mingaleev S F, Kivshar Y S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2018 arXiv: 1812.08326

    [63]

    Hu H, Huang B, Zhao E, Liu W V 2019 arXiv: 1905.03727 v1

    [64]

    Ezawa M 2018 Phys. Rev. B 98 201402Google Scholar

    [65]

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [66]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [67]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [68]

    van Miert G, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [69]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [70]

    Kunst F K, van Miert G, Bergholtz E J 2018 Phys. Rev. B 97 241405Google Scholar

    [71]

    Ezawa M 2018 Phys. Rev. B 97 155305Google Scholar

    [72]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [73]

    Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I 2018 arXiv: 1812.10171

    [74]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [75]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [76]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [77]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [78]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [79]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [80]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [81]

    Keil R, Zeuner J M, Dreisow F, Heinrich M, Tunnermann A, Nolte S, Szameit A 2013 Nat. Commun. 4 1368

    [82]

    Schomerus H 2013 Opt. Lett. 38 1912Google Scholar

    [83]

    Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986Google Scholar

    [84]

    Ling C W, Xiao M, Chan C T, Yu S F, Fung K H 2015 Opt. Express 23 2021Google Scholar

    [85]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901Google Scholar

    [86]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [87]

    Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [88]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [89]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, White A G 2012 Nat. Commun. 3 882Google Scholar

    [90]

    Tarasinski B, Asbóth J K, Dahlhaus J P 2014 Phys. Rev. A 89 042327Google Scholar

    [91]

    Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I, Silberhorn C 2017 Phys. Rev. A 96 033846Google Scholar

    [92]

    Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E, Marrucci L, Lewenstein M, Massignan P 2017 Nat. Commun. 8 15516Google Scholar

    [93]

    Yannopapas V 2011 Phys. Rev. B 84 195126Google Scholar

    [94]

    Minkov M, Savona V 2016 Optica 3 200Google Scholar

    [95]

    Liu K, Shen L, He S 2012 Opt. Lett. 37 4110Google Scholar

    [96]

    Umucalılar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [97]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U S A 113 4924Google Scholar

    [98]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [99]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [100]

    Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J 2018 Science 359 1013Google Scholar

    [103]

    Dubcek T, Kennedy C J, Lu L, Ketterle W, Soljacic M, Buljan H 2015 Phys. Rev. Lett. 114 225301Google Scholar

    [104]

    Roy S, Kolodrubetz M, Goldman N, Grushin A G 2018 2D Mater. 5 024001

    [105]

    Gao W, Yang B, Lawrence M, Fang F, Beri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar

    [106]

    Xiao M, Lin Q, Fan S 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [107]

    Lin Q, Xiao M, Yuan L, Fan S 2016 Nat. Commun. 7 13731Google Scholar

    [108]

    Kawakami T, Hu X 2017 Phys. Rev. B 96 235307Google Scholar

    [109]

    Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, Lu L 2018 Nat. Phys. 14 461Google Scholar

    [110]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [111]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [112]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [113]

    Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S 2016 Sci. Rep. 6 22270Google Scholar

    [114]

    Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B 2016 Nat. Photonics 11 130

    [115]

    Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H 2019 Nature 565 622Google Scholar

    [116]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [117]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [118]

    Ochiai T 2017 Phys. Rev. A 96 043842Google Scholar

    [119]

    Xu Y, Wang S T, Duan L M 2016 Phys. Rev. Lett. 118 045701

    [120]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljacic M 2015 Nature 525 354Google Scholar

    [121]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [122]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [123]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079

    [124]

    Martinez Alvarez V M, Barrios Vargas J E, Berdakin M, Foa Torres L E F 2018 Eur. Phys. J. Spec. Top. 227 1295Google Scholar

    [125]

    Cerjan A, Raman A, Fan S 2016 Phys. Rev. Lett. 116 203902Google Scholar

    [126]

    Pan M, Zhao H, Miao P, Longhi S, Feng L 2018 Nat. Commun. 9 1308Google Scholar

    [127]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [128]

    Kleinman D A 1962 Phys. Rev. 126 1977Google Scholar

    [129]

    Adler E 1964 Phys. Rev. 134 A728Google Scholar

    [130]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

    [131]

    Jia N, Schine N, Georgakopoulos A, Ryou A, Clark L W, Sommer A, Simon J 2018 Nat. Phys. 14 550Google Scholar

    [132]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2016 Nat. Phys. 13 146

    [133]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2011 Nat. Photonics 6 93

    [134]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan B, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [135]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [136]

    Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, Iwamoto S 2019 Optica 6 786Google Scholar

  • 图 1  SSH模型示意图, 每个元胞包含两个格点

    Figure 1.  Schematic of the SSH model, there are two sites in each unit cell.

    图 2  (a) 微纳加工(SSH 模型)的SEM图; (b) 单个柱子的模式; (c) 不同能带中的态及存在的边界态; (d) 利用波导环形阵列实现SSH模型

    Figure 2.  (a) SEM image of the coupled micropillars; (b) Modes of single micropillars; (c) Different modes of the micropillar array and edge states; (d) SSH microring array.

    图 3  (a) 旋磁光子晶体的示意图; (b) 向前向后的传输谱以及具有手性边界态的投影能带; (c) 大陈数光子晶体结构图; (d) 能带的带隙及其陈数

    Figure 3.  (a) Schematic of the gyromagnetic photonic crystal; (b) forward and backward spectra, and projected band structures with chiral edge states; (c) the diagram of large Chern number photonic crystals; (d) the band gap map and their Chern number.

    图 4  (a) Poincaré球上的LCP和RCP, 以及由PE和PM材料构成的光子晶体; (b) 没有赝自旋耦合以及具有赝自旋耦合的能带以及后者的投影能带; (c) 通过调节金属柱子实现赝自旋的耦合

    Figure 4.  (a) The polarization of LCP and RCP on the Poincaré sphere, and the photonic crystal consisting of PE and PM superlattices; (b) band structures without coupling between dseudospin states and with their coupling, and the projected band structures for the latter case; (c) photonic crystals consisting of metallic rods and collars at different positions, and their band strucutres.

    图 5  (a) 全介质光子晶体结构; (b) 收缩、高对称以及扩张晶格所对应的能带; (c) 赝自旋依赖的边界态的实验观测

    Figure 5.  (a) Schematic of all-dielectric photonic crystals; (b) band structures of shrinking and expanding lattices; (c) visualization of pseudospin-dependent edge states.

    图 6  (a) 谐振腔耦合单元; (b) 周期排布形成的耦合阵列

    Figure 6.  (a) Two coupled resonators in one unit cell; (b) a periodic array arranged by unit cells.

    图 7  (a) 光学谐振腔阵列的动态调制; (b) 激光直写波导系统的拓扑绝缘体构型; (c) 四种耦合组成的周期构型

    Figure 7.  (a) The resonator lattice with dynamic modulation; (b) floquet topological insulators using the femtosecond laser writing method; (c) four different bonds with different coupling.

    图 8  (a) 能够产生Weyl点以及节线的双螺旋光子晶体; (b) 具有Weyl点的金属夹杂的光子晶体

    Figure 8.  (a) Photonic crystals with two gyroid structures in one unit cell, and their band structures with Weyl points or nodal-line; (b) schematic of photonic crystals with the saddle-shaped metallic inclusion, and their Weyl points.

    图 9  (a) 三维全介质与双各向异性光子晶体; (b) 两种构型的光子晶体对应的能带; (c) 通过引入磁场破缺Dirac点的光子晶体构型

    Figure 9.  (a) 3 D all-dielectric and bianisotropic metacrystals; (b) band structures corresponding to two structures in (a); (c) photonic crystals with opened Dirac points when magnetization is applied on rods.

    图 10  (a) 动量空间中的奇异点以及具有增益损耗的紧束缚模型; (b) 具有增益损耗的波导阵列; (c) 具有奇异环的光子晶体板结构

    Figure 10.  (a) Exceptional points in momentum space, and the tight-binding model with gain and loss for αi and βi; (b) the waveguide array with gain and loss; (c) photonic crystal slabs with the ring of exceptional points.

    图 11  (a) 非线性SSH模型; (b) 与光强度相关的环绕数(贝利相位); (c) 将量子比特与它们的耦合器铺成二维格子的示意图; (d) 包含三个超导量子比特的超导回路

    Figure 11.  (a) The nonlinear SSH model; (b) the winding number (Berry phase) changed by intensity; (c) schematic diagram of qubits and their couplers in 2 D lattice; (d) the superconducting circuit including three qubits.

    图 12  (a) 介质柱构成的二维SSH模型的光子晶体; (b) 收缩、高对称与扩张晶格构型的能带结构; (c) 由收缩区域包围扩张区域构成的整体结构, 解的序号与本征频率的关系; (d) 实验中放于一个角的源激发的拐角态

    Figure 12.  (a) Photonic crystals of the 2D SSH model consisting of dielectric pillars; (b) band structures of shrinking, high symmetry and expending structures; (c) shrinking supercells contain expanding supercells, and the relationship between solution numbers and eigenfrequencies; (d) experimentally measured corner states when the source is placed at the corner.

  • [1]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljacic M 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [5]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [6]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [7]

    Nalitov A V, Malpuech G, Tercas H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [8]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [9]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [10]

    Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S 2019 Phys. Rev. B 99 195133Google Scholar

    [11]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [12]

    Titum P, Lindner N H, Rechtsman M C, Refael G 2015 Phys. Rev. Lett. 114 056801Google Scholar

    [13]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [14]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Ohberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [15]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [16]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [17]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 243905Google Scholar

    [18]

    Mukherjee S, Chandrasekharan H K, Ohberg P, Goldman N, Thomson R R 2018 Nat. Commun. 9 4209Google Scholar

    [19]

    Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C 2018 Phys. Rev. A 98 013855Google Scholar

    [20]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [21]

    Chen Y, Chen H, Cai G 2018 Appl. Phys. Lett. 112 013504Google Scholar

    [22]

    Hafezi M, Lukin M D, Taylor J M 2013 New J. Phys. 15 063001Google Scholar

    [23]

    Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C 2016 Phys. Rev. Lett. 116 143601Google Scholar

    [24]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [25]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [26]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [27]

    Kohmoto M 1985 Ann. Phys. 160 343Google Scholar

    [28]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [29]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [30]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [31]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [32]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [33]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [34]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [35]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [36]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [37]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [38]

    Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F 2018 Phys. Rev. B 98 214101Google Scholar

    [39]

    Qi B, Zhang L, Ge L 2018 Phys. Rev. Lett. 120 093901Google Scholar

    [40]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [41]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [42]

    Midya B, Zhao H, Feng L 2018 Nat. Commun. 9 2674Google Scholar

    [43]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [44]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [45]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F 2018 arXiv preprint arXiv: 1803.00794

    [46]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [47]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [48]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402Google Scholar

    [51]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [52]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [53]

    Haddad L H, Weaver C M, Carr L D 2015 New J. Phys. 17 063033Google Scholar

    [54]

    Soljačić M, Luo C, Joannopoulos J D, Fan S 2003 Opt. Lett. 28 637Google Scholar

    [55]

    Berger V 1998 Phys. Rev. Lett. 81 4136Google Scholar

    [56]

    Adair R, Chase L L, Payne S A 1989 Phys. Rev. B 39 3337Google Scholar

    [57]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [58]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [59]

    Rajesh C, Georgios T 2019 arXiv: 1904.09466 v1

    [60]

    Hadad Y, Khanikaev A B, Alù A 2016 Phys. Rev. B 93 155112Google Scholar

    [61]

    Mingaleev S F, Kivshar Y S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2018 arXiv: 1812.08326

    [63]

    Hu H, Huang B, Zhao E, Liu W V 2019 arXiv: 1905.03727 v1

    [64]

    Ezawa M 2018 Phys. Rev. B 98 201402Google Scholar

    [65]

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [66]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [67]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [68]

    van Miert G, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [69]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [70]

    Kunst F K, van Miert G, Bergholtz E J 2018 Phys. Rev. B 97 241405Google Scholar

    [71]

    Ezawa M 2018 Phys. Rev. B 97 155305Google Scholar

    [72]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [73]

    Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I 2018 arXiv: 1812.10171

    [74]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [75]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [76]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [77]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [78]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [79]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [80]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [81]

    Keil R, Zeuner J M, Dreisow F, Heinrich M, Tunnermann A, Nolte S, Szameit A 2013 Nat. Commun. 4 1368

    [82]

    Schomerus H 2013 Opt. Lett. 38 1912Google Scholar

    [83]

    Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986Google Scholar

    [84]

    Ling C W, Xiao M, Chan C T, Yu S F, Fung K H 2015 Opt. Express 23 2021Google Scholar

    [85]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901Google Scholar

    [86]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [87]

    Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [88]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [89]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, White A G 2012 Nat. Commun. 3 882Google Scholar

    [90]

    Tarasinski B, Asbóth J K, Dahlhaus J P 2014 Phys. Rev. A 89 042327Google Scholar

    [91]

    Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I, Silberhorn C 2017 Phys. Rev. A 96 033846Google Scholar

    [92]

    Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E, Marrucci L, Lewenstein M, Massignan P 2017 Nat. Commun. 8 15516Google Scholar

    [93]

    Yannopapas V 2011 Phys. Rev. B 84 195126Google Scholar

    [94]

    Minkov M, Savona V 2016 Optica 3 200Google Scholar

    [95]

    Liu K, Shen L, He S 2012 Opt. Lett. 37 4110Google Scholar

    [96]

    Umucalılar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [97]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U S A 113 4924Google Scholar

    [98]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [99]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [100]

    Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J 2018 Science 359 1013Google Scholar

    [103]

    Dubcek T, Kennedy C J, Lu L, Ketterle W, Soljacic M, Buljan H 2015 Phys. Rev. Lett. 114 225301Google Scholar

    [104]

    Roy S, Kolodrubetz M, Goldman N, Grushin A G 2018 2D Mater. 5 024001

    [105]

    Gao W, Yang B, Lawrence M, Fang F, Beri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar

    [106]

    Xiao M, Lin Q, Fan S 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [107]

    Lin Q, Xiao M, Yuan L, Fan S 2016 Nat. Commun. 7 13731Google Scholar

    [108]

    Kawakami T, Hu X 2017 Phys. Rev. B 96 235307Google Scholar

    [109]

    Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, Lu L 2018 Nat. Phys. 14 461Google Scholar

    [110]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [111]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [112]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [113]

    Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S 2016 Sci. Rep. 6 22270Google Scholar

    [114]

    Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B 2016 Nat. Photonics 11 130

    [115]

    Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H 2019 Nature 565 622Google Scholar

    [116]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [117]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [118]

    Ochiai T 2017 Phys. Rev. A 96 043842Google Scholar

    [119]

    Xu Y, Wang S T, Duan L M 2016 Phys. Rev. Lett. 118 045701

    [120]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljacic M 2015 Nature 525 354Google Scholar

    [121]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [122]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [123]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079

    [124]

    Martinez Alvarez V M, Barrios Vargas J E, Berdakin M, Foa Torres L E F 2018 Eur. Phys. J. Spec. Top. 227 1295Google Scholar

    [125]

    Cerjan A, Raman A, Fan S 2016 Phys. Rev. Lett. 116 203902Google Scholar

    [126]

    Pan M, Zhao H, Miao P, Longhi S, Feng L 2018 Nat. Commun. 9 1308Google Scholar

    [127]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [128]

    Kleinman D A 1962 Phys. Rev. 126 1977Google Scholar

    [129]

    Adler E 1964 Phys. Rev. 134 A728Google Scholar

    [130]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

    [131]

    Jia N, Schine N, Georgakopoulos A, Ryou A, Clark L W, Sommer A, Simon J 2018 Nat. Phys. 14 550Google Scholar

    [132]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2016 Nat. Phys. 13 146

    [133]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2011 Nat. Photonics 6 93

    [134]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan B, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [135]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [136]

    Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, Iwamoto S 2019 Optica 6 786Google Scholar

  • [1] Jiang Jing, Wang Xiao-Yun, Kong Peng, Zhao He-Ping, He Zhao-Jian, Deng Ke. Dislocation defect states in acoustic quadrupole topological insulators. Acta Physica Sinica, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [3] Xie Xiang-Nan, Li Cheng, Zeng Jun-Wei, Zhou Shen, Jiang Tian. Research progress of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [4] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [5] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [6] Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui. Experimental progress of topological exciton insulators. Acta Physica Sinica, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [7] Guo Si-Jia, Li Yu-Zeng, Li Tian-Zi, Fan Xi-Ying, Qiu Chun-Yin. Topological properties of non-isotropic two-dimensional SSH model. Acta Physica Sinica, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [8] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [11] Mei Yu-Han, Shao Yue, Hang Zhi-Hong. Microwave experimental platform to demonstrate topology physics based on tight-binding model. Acta Physica Sinica, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [12] Yan Zhong-Bo. Higher-order topological insulators and superconductors. Acta Physica Sinica, 2019, 68(22): 226101. doi: 10.7498/aps.68.20191101
    [13] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi. Magnetotransport in antidot arrays of three-dimensional topological insulators. Acta Physica Sinica, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [15] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] Zhang Xiao-Ming, Liu Guo-Dong, Du Yin, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng, Liu Zhong-Yuan. Investigation on regulating the topological electronic structure of the half-Heusler compound LaPtBi. Acta Physica Sinica, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] Zeng Lun-Wu, Song Run-Xia. Inducing magnetic monopole in conductor and topological insulator by point charge. Acta Physica Sinica, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  32824
  • PDF Downloads:  2425
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2019
  • Accepted Date:  28 October 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回