Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Higher-order topological insulators and superconductors

Yan Zhong-Bo

Citation:

Higher-order topological insulators and superconductors

Yan Zhong-Bo
PDF
HTML
Get Citation
  • Very recently, higher-order topological insulators and superconductors have attracted wide attention and aroused the great interest of researchers. Owing to their unconventional bulk-boundary correspondence, higher-order topological insulators and superconductors possess novel boundary modes whose dimensions are always lower than the first-order (or say conventional) topological insulators and superconductors, provided that their bulk dimensions are the same. The essence of higher-order topological phase is the formation of Dirac-mass domain walls on the gapped one-dimensional lower boundary. Roughly speaking, the origins of the formation can be classified as " intrinsic” and " extrinsic” type. For the former case, the formation of domain walls is forced by symmetry, suggesting that the resulting higher-order topological phases can be taken as topological crystalline phases. For this case, the domain walls are quite robust if the corresponding symmetry is preserved. For the latter case, the domain walls are formed simply because the one-dimensional lower boundary modes are gapped in a nontrivial way, however, the nontrivial way is not forced by symmetry. For this case, the domain walls are also stable against perturbations as long as the separations between them are large enough. The domain walls can have various patterns, which indicates that the higher-order topological phases are very rich. In this paper, we first reveal the connection between the higher-order topological phase and the first-order topological phase. Concretely, we show how to realize a higher-order topological phase by breaking some symmetries of a first-order topological phase, as well as stacking lower-dimensional first-order topological systems in an appropriate way. After these, we review the recent progress of theoretical and experimental study of higher-order topological insulators and superconductors. For the higher-order topological insulators, we find that the electronic materials are still laking though a lot of experimental realizations have been achieved. For higher-order topological superconductors, we find that their experimental realization and investigation are still in the very primary stage though quite a lot of relevant theoretical studies have been carried out. In order to comprehensively understand this newly-emerging field there are still many things to be done.
      Corresponding author: Yan Zhong-Bo, yanzhb5@mail.sysu.edu.cn
    [1]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [2]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [4]

    Wen X G 2017 Rev. Mod. Phys. 89 041004

    [5]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [6]

    Klitzing K V 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: from the Origin of Sound to an Origin of Light and Electrons (1st Ed.) (New York: Oxford University Press) pp5–9

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [10]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [12]

    Koing M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [13]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [14]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [15]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [16]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [17]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [18]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [19]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083

    [20]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [22]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [23]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [24]

    Stanescu T D, Tewari S 2013 J. Phys: Condens. Matter 25 233201Google Scholar

    [25]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [26]

    Kitaev A Y 2009 AIP Conference Proceedings 1134 22

    [27]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [28]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [29]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z J 2019 Nature 566 480

    [30]

    Feng T, Po H C, Vishwanath A, Wan X G 2019 Nature 566 486Google Scholar

    [31]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [32]

    Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A, Neupert T 2018 Science Advances 4 eaat0346Google Scholar

    [33]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [34]

    Langbehn J, Peng Y, Trifunovic L, Oppen F V, Brouwer P W 2017 Phys. Rev. Lett. 119 246401

    [35]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [36]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [37]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [38]

    Yan Z B, Song F, Wang Z 2018 Phys. Rev. Lett. 121 096803Google Scholar

    [39]

    Jackiw R, Rebbi C 1976 Phys. Rev. D 13 3398Google Scholar

    [40]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [41]

    Matsugatani A, Watanabe H 2018 Phys. Rev. B 98 205129Google Scholar

    [42]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [43]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404Google Scholar

    [44]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [45]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [46]

    Franca S, van den Brink J, Fulga I C 2018 Phys. Rev. B 98 201114Google Scholar

    [47]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [48]

    Miert G V, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [49]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [50]

    Calugaru D, Juricic V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [51]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012

    [52]

    Ahn J, Yang B J 2018 arXiv: 1810.05363 [cond-mat.mes-hall]

    [53]

    Kudo K, Yoshida T, Hatsugai Y 2019 arXiv: 1905.03484 [cond-mat.str-el]

    [54]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [55]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [56]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [57]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nature Materials 18 108Google Scholar

    [58]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nature Materials 18 113Google Scholar

    [59]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [60]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [61]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [63]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [64]

    Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A, Nepert T 2018 Nat. Phys. 14 918Google Scholar

    [65]

    Yue C M, Xu Y F, Song Z D, Weng H M, Lu Y M, Fang C, Dai X 2019 Nat. Phys. 15 577Google Scholar

    [66]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [67]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2018 arXiv: 1806.11116 [cond-mat.mltr-sci]

    [68]

    Sheng X L, Chen C, Liu H Y, Chen Z Y, Zhao Y X, Yu Z M, Yang S Y A 2019 arXiv: 1904.09985 [cond-mat.mes-hall]

    [69]

    Lee E, Kim R, Ahn J, Yang B J 2019 arXiv: 1904.11452 [cond-mat.mltr-sci]

    [70]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Smith C M 2019 arXiv: 1905.06053 [cond-mat.mes-hall]

    [71]

    Zhu X Y 2018 Phys. Rev. B 97 205134Google Scholar

    [72]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [73]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [74]

    Zhang R X, Cole W S, Sarma S D 2019 Phys. Rev. Lett. 122 187001Google Scholar

    [75]

    Liu T, He J J, Nori F 2018 Phys. Rev. B 98 245413Google Scholar

    [76]

    Wu Y J, Hou J P, Li Y M, Luo X W, Zhang C W 2019 arXiv: 1905.08896 [cond-mat.mes-hall]

    [77]

    Pan X H, Yang K J, Chen L, Xu G, Liu C X, Liu X 2018 arXiv: 1812.10989 [cond-mat.mes-hall]

    [78]

    Zhang R X, Cole W S, Wu X X, Sarma D S 2019 arXiv: 1905.10647 [cond-mat.supr-con]

    [79]

    Wu X X, Liu X, Thomale R, Liu C X 2019 arXiv: 1905.10648 [cond-mat.supr-con]

    [80]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [81]

    Yan Z B 2019 arXiv: 1907.02070 [cond-mat.mes-hall]

    [82]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [83]

    Queiroz R, Stern A 2019 Phys. Rev. Lett. 123 036802Google Scholar

    [84]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [85]

    Wu Z G, Yan Z B, Huang W 2019 Phys. Rev. B 99 020508Google Scholar

    [86]

    Zhu X Y 2019 Phys. Rev. Lett. 122 236401Google Scholar

    [87]

    Shapourian H, Wang Y X, Ryu S 2018 Phys. Rev. B 97 094508Google Scholar

    [88]

    Yan Z B 2019 arXiv: 1905.11411 [cond-mat.supr-con]

    [89]

    Ahn J, Yang B J 2019 arXiv: 1906.02709 [cond-mat.mes-hall]

    [90]

    Gray M J, Freudenstein J, Zhao Y S F, Oconnor R, Jenkins S, Kumar N, Hoek M, Koper A, Taniguchi T, Watanabe K, Zhong R D, Gu G D, Burch K S 2019 Nano Lett. 19 4890Google Scholar

    [91]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [92]

    Jack B, Xie Y L, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [93]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [94]

    Ghorashi S A A, Hu X, Hughes T L, Rossi E 2019 Phys. Rev. B 100 020509Google Scholar

  • 图 1  拓扑物态的边界态示意图 $n = 1$的行对应传统的拓扑物态, 其具有比系统维度低一维的无能隙边界态; $n \geqslant 2$的行对应高阶拓扑物态, 其具有比维度低n维的无能隙边界态

    Figure 1.  A schematic diagram of the boundary modes of topological matter. The line with $n = 1$ corresponds to conventional topological matters which host gapless modes whose dimensions are one-dimensional lower than the system dimension. The lines with $n \geqslant 2$ correspond to higher-order topological matters which host gapless modes whose dimensions are n-dimensional lower than the system dimension.

    图 2  从一阶拓扑绝缘体到二阶拓扑绝缘体 (a) 沿x方向取开放边界条件(${L_x} = 100$), 沿y方向取周期边界条件, 参数为$M = B = A = 1$, $\varLambda = 0$, 对应BHZ模型, 能谱反映出无能隙边界态的存在; (b) 插图中红点对应的能量本征态的波函数分布, 参数同(a), 但沿xy两个方向均取开放边界条件; 红色的深浅对应波函数分布概率的大小, 可以看出对一阶拓扑绝缘体, 波函数分布在整个边界上; (c) 边界条件和参数同(a), 除了此处$\varLambda = 0.5$, 可看出Λ项的出现让边界态打开了能隙; (d) 零模的波函数分布, 参数同(c), 但沿xy两个方向均取开放边界条件; 从插图中可发现存在四个零模, 这四个零模的波函数局域在四个角上

    Figure 2.  From first-order topological insulator to second-order topological insulator. (a) Energy spectra for a sample with open boundary condition in the x direction (the system size ${L_x} = 100$) and periodic boundary condition in the y direction. Parameters are $M = B = A = 1$, $\varLambda = 0$, which corresponds to the original BHZ model. The energy spectra reflect the existence of gapless boundary modes. (b) the density profile of a boundary mode. The parameters are the same as in (a), but now open boundary conditions are taken both in the x and y directions. One can see that the density profile of the boundary mode distributes over the whole boundary. (c) the boundary conditions and parameters are the same as in (a), except now $\varLambda = 0.5$. One can see that the presence of the Λ term opens a gap for the boundary modes. (d) the density profiles of zero modes.The parameters are the same as in (c), but now open boundary conditions are taken both in the x and y directions. One can see that there are four zero-energy modes in the inset. Their wave functions are found to be localized around the corners.

    图 3  从一维一阶拓扑绝缘体到二维二阶拓扑绝缘体 (a) 一维SSH链的示意图; (b) 利用一维SSH链构造二维二阶拓扑绝缘体, 每个单位元胞中有一个${\text{π}}$磁通

    Figure 3.  Constructing two-dimensional second-order topological insulator by using one-dimensional topological insulator: (a) A schematic diagram of the SSH chain; (b) using the one-dimensional SSH chains to construct a two-dimensional second-order topological insulator, within each small square, there is a ${\text{π}}$-flux.

  • [1]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [2]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [4]

    Wen X G 2017 Rev. Mod. Phys. 89 041004

    [5]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [6]

    Klitzing K V 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: from the Origin of Sound to an Origin of Light and Electrons (1st Ed.) (New York: Oxford University Press) pp5–9

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [10]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [12]

    Koing M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [13]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [14]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [15]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [16]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [17]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [18]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [19]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083

    [20]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [22]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [23]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [24]

    Stanescu T D, Tewari S 2013 J. Phys: Condens. Matter 25 233201Google Scholar

    [25]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [26]

    Kitaev A Y 2009 AIP Conference Proceedings 1134 22

    [27]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [28]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [29]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z J 2019 Nature 566 480

    [30]

    Feng T, Po H C, Vishwanath A, Wan X G 2019 Nature 566 486Google Scholar

    [31]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [32]

    Schindler F, Cook A M, Vergniory M G, Wang Z J, Parkin S S P, Bernevig B A, Neupert T 2018 Science Advances 4 eaat0346Google Scholar

    [33]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [34]

    Langbehn J, Peng Y, Trifunovic L, Oppen F V, Brouwer P W 2017 Phys. Rev. Lett. 119 246401

    [35]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [36]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [37]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [38]

    Yan Z B, Song F, Wang Z 2018 Phys. Rev. Lett. 121 096803Google Scholar

    [39]

    Jackiw R, Rebbi C 1976 Phys. Rev. D 13 3398Google Scholar

    [40]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [41]

    Matsugatani A, Watanabe H 2018 Phys. Rev. B 98 205129Google Scholar

    [42]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [43]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404Google Scholar

    [44]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [45]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [46]

    Franca S, van den Brink J, Fulga I C 2018 Phys. Rev. B 98 201114Google Scholar

    [47]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [48]

    Miert G V, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [49]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [50]

    Calugaru D, Juricic V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [51]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012

    [52]

    Ahn J, Yang B J 2018 arXiv: 1810.05363 [cond-mat.mes-hall]

    [53]

    Kudo K, Yoshida T, Hatsugai Y 2019 arXiv: 1905.03484 [cond-mat.str-el]

    [54]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [55]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [56]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [57]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nature Materials 18 108Google Scholar

    [58]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nature Materials 18 113Google Scholar

    [59]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [60]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [61]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [63]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [64]

    Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A, Nepert T 2018 Nat. Phys. 14 918Google Scholar

    [65]

    Yue C M, Xu Y F, Song Z D, Weng H M, Lu Y M, Fang C, Dai X 2019 Nat. Phys. 15 577Google Scholar

    [66]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [67]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2018 arXiv: 1806.11116 [cond-mat.mltr-sci]

    [68]

    Sheng X L, Chen C, Liu H Y, Chen Z Y, Zhao Y X, Yu Z M, Yang S Y A 2019 arXiv: 1904.09985 [cond-mat.mes-hall]

    [69]

    Lee E, Kim R, Ahn J, Yang B J 2019 arXiv: 1904.11452 [cond-mat.mltr-sci]

    [70]

    Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Smith C M 2019 arXiv: 1905.06053 [cond-mat.mes-hall]

    [71]

    Zhu X Y 2018 Phys. Rev. B 97 205134Google Scholar

    [72]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [73]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [74]

    Zhang R X, Cole W S, Sarma S D 2019 Phys. Rev. Lett. 122 187001Google Scholar

    [75]

    Liu T, He J J, Nori F 2018 Phys. Rev. B 98 245413Google Scholar

    [76]

    Wu Y J, Hou J P, Li Y M, Luo X W, Zhang C W 2019 arXiv: 1905.08896 [cond-mat.mes-hall]

    [77]

    Pan X H, Yang K J, Chen L, Xu G, Liu C X, Liu X 2018 arXiv: 1812.10989 [cond-mat.mes-hall]

    [78]

    Zhang R X, Cole W S, Wu X X, Sarma D S 2019 arXiv: 1905.10647 [cond-mat.supr-con]

    [79]

    Wu X X, Liu X, Thomale R, Liu C X 2019 arXiv: 1905.10648 [cond-mat.supr-con]

    [80]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [81]

    Yan Z B 2019 arXiv: 1907.02070 [cond-mat.mes-hall]

    [82]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [83]

    Queiroz R, Stern A 2019 Phys. Rev. Lett. 123 036802Google Scholar

    [84]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [85]

    Wu Z G, Yan Z B, Huang W 2019 Phys. Rev. B 99 020508Google Scholar

    [86]

    Zhu X Y 2019 Phys. Rev. Lett. 122 236401Google Scholar

    [87]

    Shapourian H, Wang Y X, Ryu S 2018 Phys. Rev. B 97 094508Google Scholar

    [88]

    Yan Z B 2019 arXiv: 1905.11411 [cond-mat.supr-con]

    [89]

    Ahn J, Yang B J 2019 arXiv: 1906.02709 [cond-mat.mes-hall]

    [90]

    Gray M J, Freudenstein J, Zhao Y S F, Oconnor R, Jenkins S, Kumar N, Hoek M, Koper A, Taniguchi T, Watanabe K, Zhong R D, Gu G D, Burch K S 2019 Nano Lett. 19 4890Google Scholar

    [91]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [92]

    Jack B, Xie Y L, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [93]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [94]

    Ghorashi S A A, Hu X, Hughes T L, Rossi E 2019 Phys. Rev. B 100 020509Google Scholar

  • [1] Jiang Jing, Wang Xiao-Yun, Kong Peng, Zhao He-Ping, He Zhao-Jian, Deng Ke. Dislocation defect states in acoustic quadrupole topological insulators. Acta Physica Sinica, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] Xie Xiang-Nan, Li Cheng, Zeng Jun-Wei, Zhou Shen, Jiang Tian. Research progress of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [3] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui. Experimental progress of topological exciton insulators. Acta Physica Sinica, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [6] Guo Si-Jia, Li Yu-Zeng, Li Tian-Zi, Fan Xi-Ying, Qiu Chun-Yin. Topological properties of non-isotropic two-dimensional SSH model. Acta Physica Sinica, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [7] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [8] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [10] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [11] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [12] Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng. Research progress of topological photonics. Acta Physica Sinica, 2019, 68(22): 224206. doi: 10.7498/aps.68.20191437
    [13] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi. Magnetotransport in antidot arrays of three-dimensional topological insulators. Acta Physica Sinica, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [15] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] Zhang Xiao-Ming, Liu Guo-Dong, Du Yin, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng, Liu Zhong-Yuan. Investigation on regulating the topological electronic structure of the half-Heusler compound LaPtBi. Acta Physica Sinica, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] Zeng Lun-Wu, Song Run-Xia. Inducing magnetic monopole in conductor and topological insulator by point charge. Acta Physica Sinica, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  27898
  • PDF Downloads:  2461
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2019
  • Accepted Date:  22 August 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回