Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of two-dimensional organic topological insulators

Gao Yi-Xuan Zhang Li-Zhi Zhang Yu-Yang Du Shi-Xuan

Citation:

Research progress of two-dimensional organic topological insulators

Gao Yi-Xuan, Zhang Li-Zhi, Zhang Yu-Yang, Du Shi-Xuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The discovery of new materials promotes the progress in science and technique. Among these new materials, topological materials have received much attention in recent years. Topological phases represent the advances both in the fundamental understanding of materials and in the broad applications in spintronics and quantum computing. The two-dimensional (2D) topological insulator (TI), also called quantum spin Hall insulator, is a promising material which has potential applications in future electronic devices with low energy consumption. The 2D TI has a bulk energy gap and a pair of gapless metallic edge states that are protected by the time reversal symmetry. To date, most of topological insulators are inorganic materials. Organic materials have potential advantages of low cost, easy fabrications, and mechanical flexibility. Historically, inorganic materials and devices have always found their organic counterparts, such as organic superconductors, organic light emitting diodes and organic spintronics. Recently, it has been predicted that some metal-organic lattices belong in an interesting class of 2D organic topological insulator (OTI). In this review, we present the progress of OTIs mainly in two typical types of them. In the first group, metal atoms bond with three neighboring molecules to form a hexagonal lattice, while they bond with two neighboring molecules to form a Kagome lattice. The electronic properties show that the Dirac band around Fermi level mainly comes from the hexagonal sites, and the flat band around Fermi level mainly is from Kagome lattice. It has been found that some of the materials from the first group could be intrinsic OTIs. However, none of the 2D OTIs predicted in the second group with a Kagome lattice is intrinsic. To obtain intrinsic OTIs from those non-intrinsic ones, in the heavy doping of material (one or two electrons per unit cell) it is required to move the Fermi level inside the gap opened by spin-orbit coupling, which is hard to realize in experiment. Therefore, many efforts have been made to search for intrinsic OTIs. It has been reported that the first group of 2D OTIs with a hexagonal lattice is found to be more possible to be intrinsic. By performing an electron counting and analyzing the orbital hybridization, an existing experimentally synthesized Cu-dicyanoanthracene (DCA) metal-organic framework is predicted to be an intrinsic OTI. Furthermore, like Cu-DCA, the structures consisting of molecules with cyanogen groups and noble metal atoms could be intrinsic OTIs. Finally, we discuss briefly possible future research directions in experimental synthesis and computational design of topological materials. We envision that OTIs will greatly broaden the scientific and technological influence of topological insulators and become a hot research topic in condensed matter physics.
    • Funds: Project supported by the National Key Research and Development Projects of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61390501), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Chinese Academy of Sciences Pioneer Hundred Talents Program.
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [2]

    Yennie D R 1987 Rev. Mod. Phys. 59 781

    [3]

    Huckestein B 1995 Rev. Mod. Phys. 67 357

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [7]

    Ren Y F, Qiao Z H, Niu Q 2016 Rep. Prog. Phys. 79 066501

    [8]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [9]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603

    [10]

    Murakami S 2006 Phys. Rev. Lett. 97 236805

    [11]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blugel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801

    [12]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805

    [13]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801

    [14]

    Wang Z F, Yao M Y, Ming W M, Miao L, Zhu F F, Liu C H, Gao C L, Qian D, Jia J F, Liu F 2013 Nat. Commun. 4 2387

    [15]

    Zhang X, Zhang H J, Wang J, Felser C, Zhang S C 2012 Science 335 1464

    [16]

    Zhou M, Ming W M, Liu Z, Wang Z F, Li P, Liu F 2014 Proc. Natl. Acad. Sci. USA 111 14378

    [17]

    Hsu C H, Huang Z Q, Chuang F C, Kuo C C, Liu Y T, Lin H, Bansil A 2015 New J. Phys. 17 025005

    [18]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287

    [19]

    Jerome D, Mazaud A, Ribault M, Bechgaard K 1980 J. Phys. Lett. 41 L95

    [20]

    Tang C W, Vanslyke S A 1987 Appl. Phys. Lett. 51 913

    [21]

    Koezuka H, Tsumura A, Ando T 1987 Synthetic Met. 18 699

    [22]

    Wang Z F, Liu Z, Liu F 2013 Nat. Commun. 4 2451

    [23]

    Wang Z F, Liu Z, Liu F 2013 Phys. Rev. Lett. 110 196801

    [24]

    Liu Z, Wang Z F, Mei J W, Wu Y S, Liu F 2013 Phys. Rev. Lett. 110 106804

    [25]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842

    [26]

    Zhou Q H, Wang J L, Chwee T S, Wu G, Wang X B, Ye Q, Xu J W, Yang S W 2015 Nanoscale 7 727

    [27]

    Zhao B, Zhang J Y, Feng W X, Yao Y G, Yang Z Q 2014 Phys. Rev. B 90 201403

    [28]

    Zhang X M, Zhao M W 2015 RSC Adv. 5 9875

    [29]

    Ma Y D, Dai Y, Li X R, Sun Q L, Huang B B A 2014 Carbon 73 382

    [30]

    Zhang X M, Wang Z H, Zhao M W, Liu F 2016 Phys. Rev. B 93 165401

    [31]

    Zhang X M, Zhao M W 2015 Sci. Rep. 5 14098

    [32]

    Wei L, Zhang X M, Zhao M W 2016 Phys. Chem. Chem. Phys. 18 8059

    [33]

    Kim H J, Li C, Feng J, Cho J H, Zhang Z Y 2016 Phys. Rev. B 93 041404

    [34]

    Dong L, Kim Y, Er D, Rappe A M, Shenoy V B 2016 Phys. Rev. Lett. 116 096601

    [35]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462

    [36]

    Sheberla D, Sun L, Blood-Forsythe M A, Er S, Wade C R, Brozek C K, Aspuru-Guzik A, Dinca M 2014 J. Am. Chem. Soc. 136 8859

    [37]

    Cui J S, Xu Z T 2014 Chem. Commun. 50 3986

    [38]

    Campbell M G, Sheberla D, Liu S F, Swager T M, Dinca M 2015 Angew. Chem. Int. Edit. 54 4349

    [39]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [40]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851

    [41]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430

    [42]

    Sakamoto J, van Heijst J, Lukin O, Schluter A D 2009 Angew. Chem. Int. Edit. 48 1030

    [43]

    Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687

    [44]

    Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M 2005 Science 310 1166

    [45]

    Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R 2011 Science 332 228

    [46]

    Shi Z L, Liu J, Lin T, Xia F, Liu P N, Lin N 2011 J. Am. Chem. Soc. 133 6150

    [47]

    Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Ruben M, Silanes I, Arnau A, Kern K, Brune H, Barth J V 2007 Nano Lett. 7 3813

    [48]

    Yan L H, Xia B W, Zhang Q S, Kuang G W, Xu H, Liu J, Liu P N, Lin N 2018 Angew. Chem. Int. Edit. 57 4617

    [49]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [50]

    Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204

    [51]

    Yao Y G, Fang Z 2005 Phys. Rev. Lett. 95 156601

    [52]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [53]

    Liu Z, Zou X L, Mei J W, Liu F 2015 Phys. Rev. B 92 220102

    [54]

    Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z F, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H 2014 J. Am. Chem. Soc. 136 14357

    [55]

    Zhang L Z, Wang Z F, Huang B, Cui B, Wang Z M, Du S X, Gao H J, Liu F 2016 Nano Lett. 16 2072

    [56]

    Pawin G, Wong K L, Kim D, Sun D Z, Bartels L, Hong S, Rahman T S, Carp R, Marsella M 2008 Angew. Chem. Int. Edit. 47 8442

    [57]

    Zhang J, Shchyrba A, Nowakowska S, Meyer E, Jung T A, Muntwiler M 2014 Chem. Commun. 50 12289

    [58]

    Kumar A, Banerjee K, Foster A S, Liljeroth P 2017 arXiv Preprint arXiv:1711.01128

    [59]

    Liljeroth P, Swart I, Paavilainen S, Repp J, Meyer G 2010 Nano Lett. 10 2475

    [60]

    Zhou M, Liu Z, Ming W M, Wang Z F, Liu F 2014 Phys. Rev. Lett. 113 236802

    [61]

    Pivetta M, Pacchioni G E, Schlickum U, Barth J V, Brune H 2013 Phys. Rev. Lett. 110 086102

    [62]

    Pacchioni G E, Pivetta M, Brune H 2015 J. Phys. Chem. C 119 25442

    [63]

    Meyer J, Nickel A, Ohmann R, Lokamani, Toher C, Ryndyk D A, Garmshausen Y, Hecht S, Moresco F, Cuniberti G 2015 Chem. Commun. 51 12621

    [64]

    Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth J V, Kern K 2007 Angew. Chem. Int. Edit. 46 710

  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [2]

    Yennie D R 1987 Rev. Mod. Phys. 59 781

    [3]

    Huckestein B 1995 Rev. Mod. Phys. 67 357

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [7]

    Ren Y F, Qiao Z H, Niu Q 2016 Rep. Prog. Phys. 79 066501

    [8]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [9]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603

    [10]

    Murakami S 2006 Phys. Rev. Lett. 97 236805

    [11]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blugel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801

    [12]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805

    [13]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801

    [14]

    Wang Z F, Yao M Y, Ming W M, Miao L, Zhu F F, Liu C H, Gao C L, Qian D, Jia J F, Liu F 2013 Nat. Commun. 4 2387

    [15]

    Zhang X, Zhang H J, Wang J, Felser C, Zhang S C 2012 Science 335 1464

    [16]

    Zhou M, Ming W M, Liu Z, Wang Z F, Li P, Liu F 2014 Proc. Natl. Acad. Sci. USA 111 14378

    [17]

    Hsu C H, Huang Z Q, Chuang F C, Kuo C C, Liu Y T, Lin H, Bansil A 2015 New J. Phys. 17 025005

    [18]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287

    [19]

    Jerome D, Mazaud A, Ribault M, Bechgaard K 1980 J. Phys. Lett. 41 L95

    [20]

    Tang C W, Vanslyke S A 1987 Appl. Phys. Lett. 51 913

    [21]

    Koezuka H, Tsumura A, Ando T 1987 Synthetic Met. 18 699

    [22]

    Wang Z F, Liu Z, Liu F 2013 Nat. Commun. 4 2451

    [23]

    Wang Z F, Liu Z, Liu F 2013 Phys. Rev. Lett. 110 196801

    [24]

    Liu Z, Wang Z F, Mei J W, Wu Y S, Liu F 2013 Phys. Rev. Lett. 110 106804

    [25]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842

    [26]

    Zhou Q H, Wang J L, Chwee T S, Wu G, Wang X B, Ye Q, Xu J W, Yang S W 2015 Nanoscale 7 727

    [27]

    Zhao B, Zhang J Y, Feng W X, Yao Y G, Yang Z Q 2014 Phys. Rev. B 90 201403

    [28]

    Zhang X M, Zhao M W 2015 RSC Adv. 5 9875

    [29]

    Ma Y D, Dai Y, Li X R, Sun Q L, Huang B B A 2014 Carbon 73 382

    [30]

    Zhang X M, Wang Z H, Zhao M W, Liu F 2016 Phys. Rev. B 93 165401

    [31]

    Zhang X M, Zhao M W 2015 Sci. Rep. 5 14098

    [32]

    Wei L, Zhang X M, Zhao M W 2016 Phys. Chem. Chem. Phys. 18 8059

    [33]

    Kim H J, Li C, Feng J, Cho J H, Zhang Z Y 2016 Phys. Rev. B 93 041404

    [34]

    Dong L, Kim Y, Er D, Rappe A M, Shenoy V B 2016 Phys. Rev. Lett. 116 096601

    [35]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462

    [36]

    Sheberla D, Sun L, Blood-Forsythe M A, Er S, Wade C R, Brozek C K, Aspuru-Guzik A, Dinca M 2014 J. Am. Chem. Soc. 136 8859

    [37]

    Cui J S, Xu Z T 2014 Chem. Commun. 50 3986

    [38]

    Campbell M G, Sheberla D, Liu S F, Swager T M, Dinca M 2015 Angew. Chem. Int. Edit. 54 4349

    [39]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [40]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851

    [41]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430

    [42]

    Sakamoto J, van Heijst J, Lukin O, Schluter A D 2009 Angew. Chem. Int. Edit. 48 1030

    [43]

    Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687

    [44]

    Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M 2005 Science 310 1166

    [45]

    Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R 2011 Science 332 228

    [46]

    Shi Z L, Liu J, Lin T, Xia F, Liu P N, Lin N 2011 J. Am. Chem. Soc. 133 6150

    [47]

    Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Ruben M, Silanes I, Arnau A, Kern K, Brune H, Barth J V 2007 Nano Lett. 7 3813

    [48]

    Yan L H, Xia B W, Zhang Q S, Kuang G W, Xu H, Liu J, Liu P N, Lin N 2018 Angew. Chem. Int. Edit. 57 4617

    [49]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [50]

    Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204

    [51]

    Yao Y G, Fang Z 2005 Phys. Rev. Lett. 95 156601

    [52]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [53]

    Liu Z, Zou X L, Mei J W, Liu F 2015 Phys. Rev. B 92 220102

    [54]

    Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z F, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H 2014 J. Am. Chem. Soc. 136 14357

    [55]

    Zhang L Z, Wang Z F, Huang B, Cui B, Wang Z M, Du S X, Gao H J, Liu F 2016 Nano Lett. 16 2072

    [56]

    Pawin G, Wong K L, Kim D, Sun D Z, Bartels L, Hong S, Rahman T S, Carp R, Marsella M 2008 Angew. Chem. Int. Edit. 47 8442

    [57]

    Zhang J, Shchyrba A, Nowakowska S, Meyer E, Jung T A, Muntwiler M 2014 Chem. Commun. 50 12289

    [58]

    Kumar A, Banerjee K, Foster A S, Liljeroth P 2017 arXiv Preprint arXiv:1711.01128

    [59]

    Liljeroth P, Swart I, Paavilainen S, Repp J, Meyer G 2010 Nano Lett. 10 2475

    [60]

    Zhou M, Liu Z, Ming W M, Wang Z F, Liu F 2014 Phys. Rev. Lett. 113 236802

    [61]

    Pivetta M, Pacchioni G E, Schlickum U, Barth J V, Brune H 2013 Phys. Rev. Lett. 110 086102

    [62]

    Pacchioni G E, Pivetta M, Brune H 2015 J. Phys. Chem. C 119 25442

    [63]

    Meyer J, Nickel A, Ohmann R, Lokamani, Toher C, Ryndyk D A, Garmshausen Y, Hecht S, Moresco F, Cuniberti G 2015 Chem. Commun. 51 12621

    [64]

    Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth J V, Kern K 2007 Angew. Chem. Int. Edit. 46 710

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] Liu Lang, Wang Yi-Ping. Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice. Acta Physica Sinica, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [5] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [6] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [7] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [8] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] Xi Xiang, Ye Kang-Ping, Wu Rui-Xin. Influence of bias magnetic field direction on band structure of magnetic photonic crystal and its role in constructing topological edge states. Acta Physica Sinica, 2020, 69(15): 154102. doi: 10.7498/aps.69.20200198
    [10] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [12] Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [13] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [14] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [15] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [18] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [19] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] Zhang Xiao-Ming, Liu Guo-Dong, Du Yin, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng, Liu Zhong-Yuan. Investigation on regulating the topological electronic structure of the half-Heusler compound LaPtBi. Acta Physica Sinica, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
Metrics
  • Abstract views:  12123
  • PDF Downloads:  569
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2018
  • Accepted Date:  16 October 2018
  • Published Online:  05 December 2018

/

返回文章
返回