Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band

Wu Fang Bu Yang Liu Zhi-Fan Wang Shao-Qing Li Si-Kun Wang Xiang-Zhao

Citation:

Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band

Wu Fang, Bu Yang, Liu Zhi-Fan, Wang Shao-Qing, Li Si-Kun, Wang Xiang-Zhao
PDF
HTML
Get Citation
  • The 193-nm immersion step-and-scan projection lithography tool is the most critical equipment in the high-volume manufacturing of integrated circuit with 45nm technology nodes and beyond. With the increase of numerical aperture (NA) of the projection lens, the resolution of lithography tool can be enhanced effectively. However, the polarization effect of the optics in an exposure system is more significant in high NA immersion lithography, which influences the lithographic imaging quality greatly. Thus, the polarization parameters of the immersion exposure system should be controlled -accurately for ensuring the lithographic imaging quality. With the advantages of miniaturization and high-accuracy online detection, the grating is applied to the polarization detection of the immersion lithography tools. A bilayer metallic grating polarizer with compact structure and excellent polarization performance is designed based on the inverse polarization effect and transmission enhancement effect on TE-polarized light. Rigorous coupled-wave theory and finite-different time-domain method are used to design the bilayer metallic grating polarizer. The former is used for analyzing the initial structure parameters of the grating, and the latter is used for acquiring the cross-sectional electromagnetic field of the structure. The initial parameters of the grating are calculated based on the surface plasmons resonance and Fabry-Perot-like theory. The influence of geometrical parameters of the grating on its polarization performance is analyzed. The simulation results show that the enhancement of TE-polarized light transmittance is mainly modulated by the middle layer height of the grating. Firstly, the TE-polarized light transmission is enhanced by the standing wave in the bottom medium cavity, and further enhanced by the top optical funnel formed. However, the transmission suppression of TM-polarized light is mainly caused by the low frequency mode of charge movement formed by surface plasmons. For the designed grating polarizer, the transmittance of TE-polarized light is 56.8%, and the extinction ratio is 65.6 dB at normal incidence. Comparing with previous metal grating polarizer, the extinction ratio of the designed grating is increased by four orders of magnitude.
      Corresponding author: Bu Yang, buyang@siom.ac.cn
    • Funds: Project supported by National Science and Technology Major Project of the Ministry of Science and Technology of China (2016ZX02201-001), the Open Fund Project of Key Laboratory of Opto-Electronic Information Processing of Guangxi Province, China (Grant No. KFJJ2016-03), and the Shanghai Committee of Science and Technology, China (Grant No. 18511104500)
    [1]

    Bruce W S, Cashmore J S 2002 Proceedings of the Society of Photo-Optical Instrumentation Engineers Santa Clara, CA, March 5–8, 2002 p11

    [2]

    Wim de B, Geert S, Nicolas L M, Armand K, Henk van G, Michel K, Mark K, Koen I S, Laurens de W, Martijn W, Steve H, Christian W 2006 Optical Microlithography XIX San Jose, CA, February 21–24, 2006 61540 B

    [3]

    Jia Y, Li Y Q, Liu L H, Han C Y, Liu X L 2014 7 th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Design Manufacturing, and Testing of Micro- and Nano-Optical Devices, and Systems Harbin, Peoples R China, April 26–29, 2014 928309

    [4]

    Xu S, Tao B, Guo Y X, Li G F 2019 Opt. Eng. 58 082405Google Scholar

    [5]

    Toru F, Naonori K, Yasushi M 2005 Proceedings of the Society of Photo-Optical Instrumentation Engineers San Jose, CA, February 28–March 3, 2005 p846

    [6]

    ASML Netherlands B V 2005 U.S. Patent 7375799 B2

    [7]

    Canon Kabushiki K 2009 U.S. Patent 7525656

    [8]

    Li L, Li, Y Q, Chi Q, Liu K, Zhang X B, Li J H 2014 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Optical Test and Measurement Technology and Equipment Harbin, Peoples R China, April 26–29, 2014 928232

    [9]

    Xu M, Urbach H P, Bore D K G, Cornelissen H J 2005 Opt. Express 13 2303Google Scholar

    [10]

    Sasaki T, Kushida H, Sakamoto K, Noda K, Okamoto H, Kawatsuki N, Ono H 2019 Opt. Commun. 431 63Google Scholar

    [11]

    Nguyen D M, Lee D, Rho J 2017 Sci. Rep. 7 2611Google Scholar

    [12]

    Thomas W, Thomas K, Michael H, Ernst B K, Andreas T 2012 Appl. Opt. 51 3224Google Scholar

    [13]

    Kosuke A, Satoshi Y, Atsushi K, Toyohiko Y 2014 Appl. Opt. 53 2942Google Scholar

    [14]

    Thomas S, Stefanie K, Kristin P, Oliver P, Kay D, Daniel F, Ivan O, Adriana S, Ernst-Bernhard K, Andreas T 2016 Adv. Opt. Mater. 4 1780Google Scholar

    [15]

    Honkanen M, Kettunen V, Kuittinen M, Lautanen J, Turunen J, Schnabel B, Wyrowski F 1999 Appl. Phys. B 68 81Google Scholar

    [16]

    Kang G G, Vartiainen I, Bai B F, Tuovinen H, Turunen J 2011 Appl. Phys. Lett. 99 071103Google Scholar

    [17]

    Kang G G, Rahom€aki J, Dong J, Honkanen S, Turunen J 2013 Appl. Phys. Lett. 103 131110Google Scholar

    [18]

    张冲, 胡敬佩, 周如意, 刘铁诚, Sergey Avakaw, 曾爱军, 黄惠杰 2019 中国激光 47 49Google Scholar

    Zhang C, Hu J P, Zhou R Y, Liu T C, Sergey A, Zeng A J, Huang H J 2019 Chin. J. Lasers 47 49Google Scholar

    [19]

    Yu Z N, Deshpande P, Wu W, Wang J, Chou S Y 2000 Appl. Phys. Lett. 77 927Google Scholar

    [20]

    Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323Google Scholar

    [21]

    褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206Google Scholar

    Chu J K, Wang Q Y, Wang Z W, Wang LD 2015 Acta Phys. Sin. 64 164206Google Scholar

    [22]

    Hwang B J, Oh B, Kim Y, Silva S, Kim J O, Czaplewski D A, Ryu J E, Kim E K, Urbas A, Zhou J F, Ku Z, Lee S J 2018 Sci. Rep. 8 14787Google Scholar

    [23]

    Wu C L, Hsueh C H, Li J H 2019 Opt. Express 27 1660Google Scholar

    [24]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wol P A 1998 Nature 391 667Google Scholar

    [25]

    谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar

    [26]

    Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403Google Scholar

    [27]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [28]

    Crouse D, Keshavareddy P 2005 Opt. Express 13 7760Google Scholar

    [29]

    Yaremchuk Y, Fitio V, Bobitski Y 2017 Semicond. Phys. Quantum Electron. Optoelectron. 20 85Google Scholar

    [30]

    Li S, Huang L, Ling Y H, Liu W B, Ba C F, Li H H 2019 Sci. Rep. 9 17117Google Scholar

    [31]

    Homola J, Koudela I, Yee S S 1999 Sens. Actuators, B: Chem. 54 16Google Scholar

    [32]

    Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331Google Scholar

    [33]

    Wang B, Wang G P 2005 Appl. Phys. Lett. 87 013107Google Scholar

    [34]

    Xie Y, Zakharian R A, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485Google Scholar

    [35]

    Borisov A G, García de Abajo F J, Shabanov S V 2005 Phys. Rev. Lett. 71 075408Google Scholar

    [36]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [37]

    Schouten H F, Visser T D, Lenstra D, Blok H 2003 Phys. Rev. E 67 036608Google Scholar

    [38]

    周云, 申溯, 叶燕, 浦东林, 陈林森 2010 光学学报 30 1158Google Scholar

    Zhou Y, Shen S, Ye Y, Pu D L, Chen L S 2010 Acta Optic. Sin. 30 1158Google Scholar

    [39]

    王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 物理学报 59 4030Google Scholar

    Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030Google Scholar

    [40]

    王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 物理学报 60 024217Google Scholar

    Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217Google Scholar

    [41]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

  • 图 1  双层金属光栅偏振器结构示意图

    Figure 1.  Schematic diagram of bilayer metallic grating polarizer.

    图 2  占空比对光栅偏振性能的影响 (a) 透过率; (b) 消光比

    Figure 2.  Polarization performance of grating as functions of the grating duty cycle: (a) Transmission; (b) extinction ratio.

    图 3  二氧化硅层高度对光栅偏振性能的影响 (a) 透过率; (b) 消光比

    Figure 3.  Polarization performance of grating as functions of the silica height: (a) Transmission; (b) Extinction ratio.

    图 4  正入射时光栅截面电场分布 (a) TM偏振光; (b) TE偏振光

    Figure 4.  Field distribution of grating cross-section when the light is incident normally: (a) TM-polarized light; (b) TE-polarized light.

    图 5  金属层高度对光栅偏振性能的影响 (a) TE透过率; (b) TM透过率; (c)消光比

    Figure 5.  Polarization performance of grating as functions of the metal layer height: (a) TE transmission; (b) TM transmission; (c) Extinction ratio.

    图 6  光栅氟化镁层高度对偏振性能的影响 (a) 透过率; (b) 消光比

    Figure 6.  Polarization performance of grating as functions of Magnesium fluoride height: (a) Transmission; (b) Extinction ratio.

    图 7  TE偏振光正入射时光栅截面场分布 (a) 电场分布; (b) 坡印廷矢量方向(箭头)和幅度(颜色图)

    Figure 7.  Field distribution of grating cross-section when TE-polarized light is incident normally: (a) Electric field distribution; (b) Poynting vector direction (arrowheads) and magnitude (color map).

    图 8  TM偏振光正入射时光栅截面场分布 (a) 瞬时(箭头)和时间平均电场分布; (b) 坡印廷矢量方向(箭头)和幅度(颜色图)

    Figure 8.  Field distribution of grating cross-section when TM-polarized light is incident normally: (a) Instantsneous (arrowheads) and time-averaged (color map) electric field distribution; (b) Poynting vector direction (arrowheads) and magnitude (color map).

    图 9  光栅的工艺容差分析 (a), (b)为占空比和金属层高度分别对TE透过率和消光比的影响; (c), (d)为占空比和中间层高度分别对TE透过率和消光比的影响; (e), (f)为金属层和中间层高度分别对TE透过率和消光比的影响

    Figure 9.  Fabrication tolerance analysis of grating: (a) and (b) are TE transmission and extinction ratio as function of the grating duty cycle and metal layer height, respectively; (c) and (d) are TE transmission and extinction ratio as function of the grating duty cycle and middle layer height, respectively; (e) and (f) are TE transmission and extinction ratio as function of the grating metal layer height and middle layer height, respectively.

  • [1]

    Bruce W S, Cashmore J S 2002 Proceedings of the Society of Photo-Optical Instrumentation Engineers Santa Clara, CA, March 5–8, 2002 p11

    [2]

    Wim de B, Geert S, Nicolas L M, Armand K, Henk van G, Michel K, Mark K, Koen I S, Laurens de W, Martijn W, Steve H, Christian W 2006 Optical Microlithography XIX San Jose, CA, February 21–24, 2006 61540 B

    [3]

    Jia Y, Li Y Q, Liu L H, Han C Y, Liu X L 2014 7 th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Design Manufacturing, and Testing of Micro- and Nano-Optical Devices, and Systems Harbin, Peoples R China, April 26–29, 2014 928309

    [4]

    Xu S, Tao B, Guo Y X, Li G F 2019 Opt. Eng. 58 082405Google Scholar

    [5]

    Toru F, Naonori K, Yasushi M 2005 Proceedings of the Society of Photo-Optical Instrumentation Engineers San Jose, CA, February 28–March 3, 2005 p846

    [6]

    ASML Netherlands B V 2005 U.S. Patent 7375799 B2

    [7]

    Canon Kabushiki K 2009 U.S. Patent 7525656

    [8]

    Li L, Li, Y Q, Chi Q, Liu K, Zhang X B, Li J H 2014 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Optical Test and Measurement Technology and Equipment Harbin, Peoples R China, April 26–29, 2014 928232

    [9]

    Xu M, Urbach H P, Bore D K G, Cornelissen H J 2005 Opt. Express 13 2303Google Scholar

    [10]

    Sasaki T, Kushida H, Sakamoto K, Noda K, Okamoto H, Kawatsuki N, Ono H 2019 Opt. Commun. 431 63Google Scholar

    [11]

    Nguyen D M, Lee D, Rho J 2017 Sci. Rep. 7 2611Google Scholar

    [12]

    Thomas W, Thomas K, Michael H, Ernst B K, Andreas T 2012 Appl. Opt. 51 3224Google Scholar

    [13]

    Kosuke A, Satoshi Y, Atsushi K, Toyohiko Y 2014 Appl. Opt. 53 2942Google Scholar

    [14]

    Thomas S, Stefanie K, Kristin P, Oliver P, Kay D, Daniel F, Ivan O, Adriana S, Ernst-Bernhard K, Andreas T 2016 Adv. Opt. Mater. 4 1780Google Scholar

    [15]

    Honkanen M, Kettunen V, Kuittinen M, Lautanen J, Turunen J, Schnabel B, Wyrowski F 1999 Appl. Phys. B 68 81Google Scholar

    [16]

    Kang G G, Vartiainen I, Bai B F, Tuovinen H, Turunen J 2011 Appl. Phys. Lett. 99 071103Google Scholar

    [17]

    Kang G G, Rahom€aki J, Dong J, Honkanen S, Turunen J 2013 Appl. Phys. Lett. 103 131110Google Scholar

    [18]

    张冲, 胡敬佩, 周如意, 刘铁诚, Sergey Avakaw, 曾爱军, 黄惠杰 2019 中国激光 47 49Google Scholar

    Zhang C, Hu J P, Zhou R Y, Liu T C, Sergey A, Zeng A J, Huang H J 2019 Chin. J. Lasers 47 49Google Scholar

    [19]

    Yu Z N, Deshpande P, Wu W, Wang J, Chou S Y 2000 Appl. Phys. Lett. 77 927Google Scholar

    [20]

    Ekinci Y, Solak H H, David C, Sigg H 2006 Opt. Express 14 2323Google Scholar

    [21]

    褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206Google Scholar

    Chu J K, Wang Q Y, Wang Z W, Wang LD 2015 Acta Phys. Sin. 64 164206Google Scholar

    [22]

    Hwang B J, Oh B, Kim Y, Silva S, Kim J O, Czaplewski D A, Ryu J E, Kim E K, Urbas A, Zhou J F, Ku Z, Lee S J 2018 Sci. Rep. 8 14787Google Scholar

    [23]

    Wu C L, Hsueh C H, Li J H 2019 Opt. Express 27 1660Google Scholar

    [24]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wol P A 1998 Nature 391 667Google Scholar

    [25]

    谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar

    [26]

    Cao Q, Lalanne P 2002 Phys. Rev. Lett. 88 057403Google Scholar

    [27]

    褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [28]

    Crouse D, Keshavareddy P 2005 Opt. Express 13 7760Google Scholar

    [29]

    Yaremchuk Y, Fitio V, Bobitski Y 2017 Semicond. Phys. Quantum Electron. Optoelectron. 20 85Google Scholar

    [30]

    Li S, Huang L, Ling Y H, Liu W B, Ba C F, Li H H 2019 Sci. Rep. 9 17117Google Scholar

    [31]

    Homola J, Koudela I, Yee S S 1999 Sens. Actuators, B: Chem. 54 16Google Scholar

    [32]

    Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331Google Scholar

    [33]

    Wang B, Wang G P 2005 Appl. Phys. Lett. 87 013107Google Scholar

    [34]

    Xie Y, Zakharian R A, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485Google Scholar

    [35]

    Borisov A G, García de Abajo F J, Shabanov S V 2005 Phys. Rev. Lett. 71 075408Google Scholar

    [36]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [37]

    Schouten H F, Visser T D, Lenstra D, Blok H 2003 Phys. Rev. E 67 036608Google Scholar

    [38]

    周云, 申溯, 叶燕, 浦东林, 陈林森 2010 光学学报 30 1158Google Scholar

    Zhou Y, Shen S, Ye Y, Pu D L, Chen L S 2010 Acta Optic. Sin. 30 1158Google Scholar

    [39]

    王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌 2010 物理学报 59 4030Google Scholar

    Wang Y W, Liu M L, Liu R J, Lei H N, Deng X B 2010 Acta Phys. Sin. 59 4030Google Scholar

    [40]

    王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙 2011 物理学报 60 024217Google Scholar

    Wang Y W, Liu M L, Liu R J, Lei H N, Tian X L 2011 Acta Phys. Sin. 60 024217Google Scholar

    [41]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

  • [1] Liu Ju, Cao Yi-Wei, Lv Quan-Jiang, Yang Tian-Peng, Mi Ting-Ting, Wang Xiao-Wen, Liu Jun-Lin. Influence of period number of superlattice electron barrier layer on the performance of AlGaN-based deep ultraviolet LED. Acta Physica Sinica, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [2] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [3] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] Feng Li-Ya, Lu Hui-Min, Zhu Yi-Fan, Chen Yi-Yong, Yu Tong-Jun, Wang Jian-Ping. Intelligent optimization design of electron barrier layer for AlGaN-based deep-ultraviolet light-emitting diodes. Acta Physica Sinica, 2023, 72(4): 048502. doi: 10.7498/aps.72.20222004
    [5] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [6] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun. Extreme ultraviolet polarization vortex beam based on high harmonic generation. Acta Physica Sinica, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [8] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [9] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [10] Gai Min-Qiang, Wang Ying, Pan Shi-Lie. Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2. Acta Physica Sinica, 2019, 68(2): 024208. doi: 10.7498/aps.68.20182145
    [11] Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong. Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research. Acta Physica Sinica, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [12] Zheng Dong-Hui, Li Jin-Peng, Chen Lei, Zhu Wen-Hua, Han Zhi-Gang, Wulan Tu-Ya, Guo Ren-Hui. Spatial phase-shifting polarization point-piffraction interferometer for wavefront measurement. Acta Physica Sinica, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [13] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [14] Chu Jin-Kui, Wang Qian-Yi, Wang Zhi-Wen, Wang Li-Ding. Extraordinary optical transmission through bilayer metallic nano-grating for s-polarization light. Acta Physica Sinica, 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [15] Zhao Hua-Jun, Yang Shou-Liang, Zhang Dong, Liang Kang-You, Cheng Zheng-Fu, Shi Dong-Ping. Design of polarizing beam splitters based on subwavelength metal grating. Acta Physica Sinica, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [16] Jian Xiao-Hua, Zhang Chun-Min, Zhang Lin, Zhao Bao-Chang, Zhu Lan-Yan. The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer. Acta Physica Sinica, 2009, 58(4): 2286-2293. doi: 10.7498/aps.58.2286
    [17] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [18] Zhu Wei-Zhong, Wu Yan-Qing, Guo Zhi, Zhu Xiao-Li, Ma Jie, Xie Chang-Qing, Shi Pei-Xiong, Zhou Hong-Jun, Huo Tong-Lin, Tai Ren-Zhong, Xu Hong-Jie. The design, fabrication and performance of a large area 10000 line/mm metal transmission diffraction gratings for soft X-ray. Acta Physica Sinica, 2008, 57(10): 6386-6392. doi: 10.7498/aps.57.6386
    [19] Jiang Yi-Ming, Xie Heng-Bo, Guo Feng, Liu Ping, Li Jin. Theoretical study on the transport in metal/organic bi-layer thin films. Acta Physica Sinica, 2005, 54(12): 5769-5773. doi: 10.7498/aps.54.5769
    [20] TAO SHI-YAO, WONG WEN-SHU, SUN HSIANG. A TWO-METER NORMAL INCIDENCE VACUUM ULTRA-VIOLET SPECTROGRAPH. Acta Physica Sinica, 1963, 19(1): 11-24. doi: 10.7498/aps.19.11
Metrics
  • Abstract views:  7343
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2020
  • Accepted Date:  16 October 2020
  • Available Online:  04 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回