Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of electro-optic modulator on Er-doped fiber femtosecond laser

Cao Shi-Ying Lin Bai-Ke Yuan Xiao-Di Ding Yong-Jin Meng Fei Fang Zhan-Jun

Citation:

Influence of electro-optic modulator on Er-doped fiber femtosecond laser

Cao Shi-Ying, Lin Bai-Ke, Yuan Xiao-Di, Ding Yong-Jin, Meng Fei, Fang Zhan-Jun
PDF
HTML
Get Citation
  • Narrow-linewidth femtosecond optical frequency comb plays an important role in the fields, such as optical clock comparison, time frequency transfer, ultrastable microwave generation, absolute distance measurement, high precision spectroscopy, etc. Due to the influence of the lifetime of the upper energy level in the gain medium, the linewidth of Er-fiber combs is generally on the order of several hundred kilohertz. In order to narrow the linewidth of comb teeth, an effective method is to insert a fast response electro-optic modulator (EOM) into the laser cavity, so that the servo bandwidth of fiber comb is extended to several hundred kilohertz, which provides a feedback mechanism for fast servo locking. Among them, a high quality femtosecond laser is the core. Based on this, the influence of the EOM on the parameters of Er-fiber femtosecond laser is studied in this paper. By calculating the refractive index, group velocity dispersion, and phase delay of the electro-optic crystal, the influence of the introduction of the EOM on the laser performance is analyzed. A LiNbO3 (LN) crystal with a length of 3 mm and x-cut is selected as the EOM and inserted into the laser cavity. The influence of the applied voltage of the EOM on the repetition rate and carrier envelope offset frequency of the laser are obtained experimentally. When the voltage on the LN crystal changes from -200 to 200 V, the adjustment of repetition rate is 60 Hz and the carrier envelope offset frequency is 25 MHz. Then the two parameters are phase locked through the EOM. Furthermore, by phase locking the beat note between the fiber comb and a narrow-linewidth continue wavelength laser at 1542 nm, it is verified that the introduction of the EOM can expand the servo bandwidth of the laser to more than 236 kHz, which provides a technical basis for establishing narrow linewidth femtosecond optical frequency combs. The following work will verify the performance of comb line, that is, when the comb is locked to a narrow-linewidth laser (such as 1542 nm), the performance of comb line at wavelength (such as 698, 729 nm, and so on) of distant place will be analyzed in detail.
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFF0200204)
    [1]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [2]

    Liu T A, Shu R H, Peng J L 2008 Opt. Express 16 10728Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 434Google Scholar

    [4]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y. L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [5]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [6]

    Picqué N, Hänsch T W 2019 Nat. Photonics 13 146Google Scholar

    [7]

    McCracken R A, Charsley J M, Reid D T 2017 Opt. Express 25 15058Google Scholar

    [8]

    Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K, Newbury N R 2014 Opt. Express 22 6996Google Scholar

    [9]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger O, Lampmann K, Hülsing T, Hänsch T W, and Holzwarth R 2016 Optica 3 1381Google Scholar

    [10]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [11]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G, Coq Y L 2014 Nat. Photonics 8 219Google Scholar

    [14]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J 2005 Opt. Lett. 30 2948Google Scholar

    [15]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [16]

    Torcheboeuf N, Buchs G, Kundermann S, Portuondo-Campa E, Bennès J, Lecomte S 2017 Opt. Express 25 2215Google Scholar

    [17]

    Schweyer S M, Eder B, Putzer P, Mayerbacher M, Lemke N, Schreiber K U, Hugentobler U, Kienberger R 2018 Opt. Express 26 23798Google Scholar

    [18]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [19]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [20]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [21]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205Google Scholar

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205Google Scholar

    [22]

    Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M, Hong F L 2019 Opt. Express 27 6404Google Scholar

    [23]

    Kim Y, Kim S, Kim Y J, Hussein H, Kim S W 2009 Opt. Express 17 11972Google Scholar

    [24]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H R 2004 Opt. Express 12 770Google Scholar

    [25]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jørgensen C G 2004 Opt. Express 12 4999Google Scholar

  • 图 1  LN晶体的折射率曲线

    Figure 1.  Refractive index curves of LiNbO3 crystal.

    图 2  LN晶体的群速度色散曲线

    Figure 2.  Group velocity dispersion curves of LiNbO3 crystal.

    图 3  腔内加入EOM的掺Er光纤光梳结构图. 其中, LD为激光二极管, WDM为980 nm/1550 nm波分复用器件, EDF为增益光纤, Col为光纤准直器, PBS为偏振分光片, ISO为隔离器, λ/4为四分之一波片, λ/2为二分之一波片, M为平面反射镜, PZT为压电陶瓷, EOM为电光晶体调制器, HNLF为高非线性光纤, F为透镜, PD为光电探测器, PPL为伺服锁定环路, PPLN为周期极化LN晶体, SW为微波线切换模块

    Figure 3.  Schematic diagram of the Er-fiber comb with an intra-cavity EOM. LD, laser diode; WDM, 980 nm/1550 nm wavelength division multiplexing; EDF, Er-doped gain fiber; Col, fiber collimator; PBS, polarization beam splitter; ISO, isolator; λ/4, quarter wave plate; λ/2, half wave plate; M, plane mirror; PZT, piezoelectric transducer; EOM, electro-optic modulator; HNLF, highly nonlinear fiber; F, optical lens; PD, photoelectric diode; PPL, phase lock loop; PPLN, Periodically Poled Lithium Niobate; SW, signal switch module

    图 4  激光器腔内有无EOM时的锁模光谱

    Figure 4.  Spectra of the Er-fiber femtosecond laser with and without an intra-cavity EOM.

    图 5  激光器中加入EOM锁模后的射频曲线, 其中插图为163 MHz处的频谱

    Figure 5.  Radio frequency of the Er-fiber femtosecond laser with an intra-cavity EOM. The insert is the radio frequency at 163 MHz.

    图 6  激光器载波包络偏移频率, 插图为扩谱后的倍频程光谱图

    Figure 6.  Signal-to-noise ratio of carrier-envelop offset frequency in 100 kHz resolution bandwidth (RBW). The insert is octave spanning spectrum after HNLF.

    图 7  EOM晶体电压对激光器参数的影响 (a) EOM晶体电压对激光器重复频率的影响; (b) EOM晶体电压对激光器载波包络偏移频率的影响

    Figure 7.  Diagram showing the change in laser parameters at different voltage on EOM: (a) The change in repetition rate; (b) the change in carrier envelope offset frequency.

    图 8  EOM晶体电压改变时, 激光器输出光谱变化

    Figure 8.  Evolution of the spectra of the Er-fiber femtosecond laser with the changing of the voltage on EOM.

    图 9  激光器自由运转时, 重复频率漂移

    Figure 9.  Frequency drift of the repetition rate.

    图 10  重复频率锁定后的频率变化 (a) 采用EOM锁定重复频率; (b) 采用PZT锁定重复频率

    Figure 10.  Residual fluctuations of the repetition rate when it is phase-locked: (a) Phase-locked by EOM; (b) phase-locked by PZT.

    图 11  采用EOM和PZT锁定重复频率后, 所获得的重复频率的相对Allan偏差曲线

    Figure 11.  Calculated Allan deviations when the repetition rate was phase-locked by EOM and PZT respectively.

    图 12  自由运转时f0信号漂移曲线

    Figure 12.  Frequency drift of the carrier envelope offset frequency.

    图 13  采用EOM锁定f0信号后的频率变化

    Figure 13.  Residual fluctuations of the carrier envelope offset frequency when it is phase-locked by EOM.

    图 14  飞秒激光器与1542 nm的单频激光的拍频信号 (a) 采用PZT锁定后的拍频信号, 其中分辨率带宽为100 kHz; (b) 采用EOM锁定后的拍频信号, 其中分辨率带宽为1 kHz

    Figure 14.  Beat note between the Er-fiber comb and a 1542 nm laser: (a) Spectrum of the in-loop fb after phase-locking with PZT in 100 kHz RBW; (b) spectrum of the in-loop fb after phase-locking with EOM in 1 kHz RBW.

    图 15  光梳与1542 nm激光拍频信号fb锁定后的频率变化

    Figure 15.  Residual fluctuations of the beat note when the Er-fiber comb was phase-locked to a 1542 nm laser.

  • [1]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [2]

    Liu T A, Shu R H, Peng J L 2008 Opt. Express 16 10728Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 434Google Scholar

    [4]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y. L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [5]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [6]

    Picqué N, Hänsch T W 2019 Nat. Photonics 13 146Google Scholar

    [7]

    McCracken R A, Charsley J M, Reid D T 2017 Opt. Express 25 15058Google Scholar

    [8]

    Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K, Newbury N R 2014 Opt. Express 22 6996Google Scholar

    [9]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger O, Lampmann K, Hülsing T, Hänsch T W, and Holzwarth R 2016 Optica 3 1381Google Scholar

    [10]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [11]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G, Coq Y L 2014 Nat. Photonics 8 219Google Scholar

    [14]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J 2005 Opt. Lett. 30 2948Google Scholar

    [15]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [16]

    Torcheboeuf N, Buchs G, Kundermann S, Portuondo-Campa E, Bennès J, Lecomte S 2017 Opt. Express 25 2215Google Scholar

    [17]

    Schweyer S M, Eder B, Putzer P, Mayerbacher M, Lemke N, Schreiber K U, Hugentobler U, Kienberger R 2018 Opt. Express 26 23798Google Scholar

    [18]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [19]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [20]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [21]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205Google Scholar

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205Google Scholar

    [22]

    Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M, Hong F L 2019 Opt. Express 27 6404Google Scholar

    [23]

    Kim Y, Kim S, Kim Y J, Hussein H, Kim S W 2009 Opt. Express 17 11972Google Scholar

    [24]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H R 2004 Opt. Express 12 770Google Scholar

    [25]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jørgensen C G 2004 Opt. Express 12 4999Google Scholar

  • [1] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [2] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [3] Hou Jia-Jia, Zhao Gang, Tan Wei, Qiu Xiao-Dong, Jia Meng-Yuan, Ma Wei-Guang, Zhang Lei, Dong Lei, Feng Xiao-Xia, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental researches of laser phase lock with dual-servo feedbacks based on the piezoelectric transducer and fiber electrooptic phase modulator. Acta Physica Sinica, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [4] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [5] Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun. Er-fiber femtosecond optical frequency comb covering visible light. Acta Physica Sinica, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [6] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [7] Xing Ying-Bin, Ye Bao-Yuan, Jiang Zuo-Wen, Dai Neng-Li, Li Jin-Yan. Development of high efficiency Tm3+-doped fiber and Tm3+-doped fiber laser. Acta Physica Sinica, 2014, 63(1): 014209. doi: 10.7498/aps.63.014209
    [8] Cao Shi-Ying, Meng Fei, Fang Zhan-Jun, Li Tian-Chu. Experimental study on detection of the high signal-to-noise ratio of the carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [9] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [10] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] Li Tian-Chu, Cao Shi-Ying, Meng Fei, Cai Yue, Fang Zhan-Jun, Wang Gui-Zhong, Zhang Zhi-Gang. Detection of carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [12] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [13] Chen Zi-Lun, Zhou Pu, Xu Xiao-Jun, Hou Jing, Jiang Zong-Fu. The influence of spectral lines and coupling coefficient on mutual injection locking of fiber lasers. Acta Physica Sinica, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [14] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [15] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [16] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [17] Mutual injection locking of two individual fiber lasers. Acta Physica Sinica, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [18] Huang Xiu-Jiang, Liu Yong-Zhi, Sui Zhan, Li Ming-Zhong, Li Xin, Lin Hong-Huan, Wang Jian-Jun. Ultrashort pulse Yb3+-doped fiber ring laser with all-fiber structure. Acta Physica Sinica, 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [19] SUN JUN-QIANG, HUANG DE-XIU, LI ZAI-GUANG. SELF-PULSING IN THE Er3+-DOPED FIBER LASER. Acta Physica Sinica, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
    [20] HU KAI-SHENG, LI ZONG-XIANG, NING DING, LI HAO, ZHOU JIAN-PING, LIU WEI-MIN. EFFECTS OF γ IRRADIATION ON LOSS CHARACTERISTICS OF SINGLE MODE OPTICAL FIBERS DOPED WITH RARE EARTH Er3+. Acta Physica Sinica, 1992, 41(6): 890-897. doi: 10.7498/aps.41.890
Metrics
  • Abstract views:  5495
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2020
  • Accepted Date:  09 November 2020
  • Available Online:  24 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回