-
Phase anisotropy in laser resonant cavity will bring about an influence on laser frequency and polarization, such as laser frequency splitting, of which the frequency difference is determined by their introduced phase retardation. For a helium-neon laser with a small phase retardation in the cavity, the two split modes are very close to each other whose burned holes are overlapped. Then only one mode oscillates while the other is always in lock-in state due to strong mode competition, which forms hidden frequency split. Meanwhile the spacing between adjacent longitudinal modes deviates from original value and produces a certain variation equal to twice the hidden splitting frequency difference. As a result the longitudinal modes spacing variation is dominated by the phase retardation. On the other hand, by applying transverse magnetic field to a laser tube along the polarization direction, the neon atoms will undergo transverse Zeeman effect and be divided into two groups to provide the gain for polarized light beams parallel to the magnetic field and perpendicular to the magnetic field respectively. Then the laser mode competition is greatly weakened so that the two split modes can oscillate simultaneously to obtain the frequency difference. In order to make profound study of the consistency between longitudinal mode spacing variation and splitting mode frequency difference in the presence of transverse magnetic field, the samples of tilted quartz plate or half wave plate is placed into laser cavity to produce phase retardation. By the two mentioned methods, the splitting frequency difference varying with phase retardation of samples is deduced to make a comparison. Two measurements show that the average relative deviation is less than 1%, while the experimental results accord with theoretical analyses quite well. In this way splitting frequency difference of Zeeman dual-frequency laser can be determined accurately, and a new method to measure the phase retardation of half wave plate is provided.
-
Keywords:
- Zeeman laser /
- anisotropy /
- frequency splitting /
- laser longitudinal mode
[1] Bretenaker F, Floch A L 1990 IEEE J. Quantum. Electron. 26 1451Google Scholar
[2] Voitovich A P, Svirina L P, Severikov V N 1991 Opt. Commun. 80 435Google Scholar
[3] Travagnin M, van Exter M P, Jansen van Doorn A K, Woerdman J P 1996 Phys. Rev. A 54 1647Google Scholar
[4] Travagnin M 1997 Phys. Rev. A 56 4094Google Scholar
[5] Schreiber T, Roser F, Schmidt O, Limpert J, Iliew R, Lederer F, Petersson A, Jacobsen C, Hansen K P, Broeng J, Tünnermann A 2005 Opt. Express 13 7621Google Scholar
[6] Khandokhin P A, Ievlev I V, Lebedeva Y S, Mukhin I B, Palashov O V, Khazanov E A 2011 Quantum. Electron. 41 103Google Scholar
[7] Khandokhin P A, Mamaev Y A 2015 Quantum. Electron. 45 128Google Scholar
[8] Fördös T, Jaffrès H, Postava K, Seghilani M S, Garnache A, Pištora J, Drouhin H J 2017 Phys. Rev. A 96 043828Google Scholar
[9] Litvin I A 2013 Opt. Express 21 10706Google Scholar
[10] Mehdi A, Julien F, Alexandre J, Ghaya B, Daniel D, Jean-Marie G 2018 Opt. Express 26 6739Google Scholar
[11] Petrovskiy V N, Prokopova N M, Protsenko E D, Yermachenko V M 2007 Laser Phys. Lett. 4 191Google Scholar
[12] Oron R, Blit S, Davidson N, Friesem A A, Bomzon Z, Hasman E 2000 Appl. Phys. Lett. 77 3322Google Scholar
[13] Jansen van Doorn AK, van Exter M P, Woerdman J P 1998 IEEE Quantum. Electron. 34 700Google Scholar
[14] Wu Y, Zhang S L, Li Y 2013 Opt. Express 21 13684Google Scholar
[15] Oram R J, Latimer I D, Spoor S P, Bocking S 1993 J. Phys. D 26 1169Google Scholar
[16] Zhang S L, Wu M X, Jin G F 1990 Appl. Opt. 29 1265Google Scholar
[17] Zhang S L, Holzapfel W 2013 Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Berlin: Wiley and Tsinghua University Press) pp113−115
[18] Mamaev Y A, Khandokhin P A 2011 IEEE Quantum. Electron. 41 571Google Scholar
[19] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利 2019 物理学报 68 104201Google Scholar
Chen K, Zhu L Q, Niu H S, Meng K, Dong M L 2019 Acta Phys. Sin. 68 104201Google Scholar
[20] Liu W X, Liu M, Zhang S L 2008 Appl. Opt. 47 5562Google Scholar
[21] Holzapfel W, Settgast W 1989 Appl. Opt. 28 4585Google Scholar
[22] Holzapfel W, Neuschaefer-Rube S, Kobusch M 2000 Measurement 28 277Google Scholar
[23] Ren C, Yang X T, Zhang S L 2012 Chin. Phys. Lett. 29 054204Google Scholar
[24] Hu Z H, Harding K, Huang P S, Zhang S L, Yoshizawa T 2010 Proc. SPIE 7855 711
[25] Fei L G, Li Y, Zong X B, Zhang S L 2005 Opt. Commun. 249 255Google Scholar
[26] Zhou L F, Zhang S L, Huang Y, Guo H 2008 Laser Phys. 18 1517Google Scholar
[27] 朱守深, 张书练, 刘维新, 牛海莎 2014 物理学报 63 064201Google Scholar
Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201Google Scholar
[28] Zong X B, Liu W X, Zhang S L 2005 Chin. Phys. Lett. 22 1906Google Scholar
[29] Guo J H, Shen S, Jiang J H, Zhang S L 1996 Acta Opt. Sin. 16 716
-
表 1 半波片相位延迟测量结果
Table 1. Measurement of phase retardation of half wave plate.
待测波片 BZFS方法测得分裂频差$\Delta {v_{\rm{L}}}$/MHz LMSC方法测得相邻级纵模间隔 BZFS方法测量${\phi _1}$/(°) LMSC方法测量${\phi _2}$/(°) ${\varDelta _1}$/MHz ${\varDelta _2}$/MHz 1# 6.02 722.18 710.10 178.487 178.482 2# 4.9 711.13 721.08 181.232 181.252 3# 11.17 727.08 705.03 177.192 177.227 -
[1] Bretenaker F, Floch A L 1990 IEEE J. Quantum. Electron. 26 1451Google Scholar
[2] Voitovich A P, Svirina L P, Severikov V N 1991 Opt. Commun. 80 435Google Scholar
[3] Travagnin M, van Exter M P, Jansen van Doorn A K, Woerdman J P 1996 Phys. Rev. A 54 1647Google Scholar
[4] Travagnin M 1997 Phys. Rev. A 56 4094Google Scholar
[5] Schreiber T, Roser F, Schmidt O, Limpert J, Iliew R, Lederer F, Petersson A, Jacobsen C, Hansen K P, Broeng J, Tünnermann A 2005 Opt. Express 13 7621Google Scholar
[6] Khandokhin P A, Ievlev I V, Lebedeva Y S, Mukhin I B, Palashov O V, Khazanov E A 2011 Quantum. Electron. 41 103Google Scholar
[7] Khandokhin P A, Mamaev Y A 2015 Quantum. Electron. 45 128Google Scholar
[8] Fördös T, Jaffrès H, Postava K, Seghilani M S, Garnache A, Pištora J, Drouhin H J 2017 Phys. Rev. A 96 043828Google Scholar
[9] Litvin I A 2013 Opt. Express 21 10706Google Scholar
[10] Mehdi A, Julien F, Alexandre J, Ghaya B, Daniel D, Jean-Marie G 2018 Opt. Express 26 6739Google Scholar
[11] Petrovskiy V N, Prokopova N M, Protsenko E D, Yermachenko V M 2007 Laser Phys. Lett. 4 191Google Scholar
[12] Oron R, Blit S, Davidson N, Friesem A A, Bomzon Z, Hasman E 2000 Appl. Phys. Lett. 77 3322Google Scholar
[13] Jansen van Doorn AK, van Exter M P, Woerdman J P 1998 IEEE Quantum. Electron. 34 700Google Scholar
[14] Wu Y, Zhang S L, Li Y 2013 Opt. Express 21 13684Google Scholar
[15] Oram R J, Latimer I D, Spoor S P, Bocking S 1993 J. Phys. D 26 1169Google Scholar
[16] Zhang S L, Wu M X, Jin G F 1990 Appl. Opt. 29 1265Google Scholar
[17] Zhang S L, Holzapfel W 2013 Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Berlin: Wiley and Tsinghua University Press) pp113−115
[18] Mamaev Y A, Khandokhin P A 2011 IEEE Quantum. Electron. 41 571Google Scholar
[19] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利 2019 物理学报 68 104201Google Scholar
Chen K, Zhu L Q, Niu H S, Meng K, Dong M L 2019 Acta Phys. Sin. 68 104201Google Scholar
[20] Liu W X, Liu M, Zhang S L 2008 Appl. Opt. 47 5562Google Scholar
[21] Holzapfel W, Settgast W 1989 Appl. Opt. 28 4585Google Scholar
[22] Holzapfel W, Neuschaefer-Rube S, Kobusch M 2000 Measurement 28 277Google Scholar
[23] Ren C, Yang X T, Zhang S L 2012 Chin. Phys. Lett. 29 054204Google Scholar
[24] Hu Z H, Harding K, Huang P S, Zhang S L, Yoshizawa T 2010 Proc. SPIE 7855 711
[25] Fei L G, Li Y, Zong X B, Zhang S L 2005 Opt. Commun. 249 255Google Scholar
[26] Zhou L F, Zhang S L, Huang Y, Guo H 2008 Laser Phys. 18 1517Google Scholar
[27] 朱守深, 张书练, 刘维新, 牛海莎 2014 物理学报 63 064201Google Scholar
Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201Google Scholar
[28] Zong X B, Liu W X, Zhang S L 2005 Chin. Phys. Lett. 22 1906Google Scholar
[29] Guo J H, Shen S, Jiang J H, Zhang S L 1996 Acta Opt. Sin. 16 716
Catalog
Metrics
- Abstract views: 4720
- PDF Downloads: 53
- Cited By: 0