-
The fast Z-pinch plasma formation, exploding dynamics, and the evolution of the instability can be controlled experimentally by making special structures on metal surface layer to change the initial state of material, which is valuable for studying the Z-pinch physics. Experiments on the explosion of thin flat foils which have been etched into a periodical structure on surface are performed on the QG-1 facility (~1.4 MA peak current, ~100 ns rise time) in order to study the effects of different surface conditions on explosion and control the evolution of the instability in fast Z-pinch plasma. A kind of inverse load configuration is used in experiment in which the return current post is set at the central axial-position and two modified flat foils are strained outside symmetrically as the main load. So the corresponding J × B force directs outward from the return current post orthogonal to the foil plane, creating an acceleration and pushing the foil plasma away from the center in this configuration. Different surfaces of the foil are also investigated in different conditions because of the asymmetric magnetic field distribution which is useful to study the different evolutions of instability. The foils used in the experiment mainly are the 30-μm-thick aluminum foil. The wavelength of groove perturbations seeded on the surface is 2 mm wide and ~10 μm deep. The plasma explosion dynamic behaviors around conditioned area are diagnosed by laser shadowgraphy, laser interferometry, multiframe optical self-emission imaging and B-dot. It is found that the initially etched periodical structure on surface can control the plasma structure in exploding process which can be concluded as follows. Developing plasma structure shows a periodic character similar to the initial surface structure and the eigenwavelength of the Al is suppressed. In the meantime, the surface without etched perturbations is also influenced by the etched side, showing a similar instability structure but with a lower amplitude. The correlation between two surfaces turns stronger than the case of normal foils. A faster expanding rate occurs in the deep region of the initial periodical groove structure which causes a reverse structure to form. In the discontinuous area of the conditoned structure, a narrow stream of plasma jets perpendicularly from the metal surface which causes a half-wavelength to occur in spectrum analysis. The magneto-hydro-dynamic theory analysis shows that the change of electrothermal instabilities is caused dominantly by the modulation of current density flowing around the periodical structure.
-
Keywords:
- exploding foils /
- planar configuration /
- periodical modified structure /
- electrothermal instability
[1] Jones B, Deeney C, McKenney J L, Garasi C J, Mehlhorn T A, Robinson A C, Wunsch S E, Bland S N, Lebedev S V, Chittenden J P, Bott S C, Ampleford D J, Palmer J B A, Rapley J, Hall G N, Oliver B V 2005 Phys. Rev. Lett. 95 225001Google Scholar
[2] Hall G N 2007 Ph. D. Dissertation (London: Science of the University of London)
[3] Hall G N, Chittenden J P, Bland S N, Lebedev S V, Bott S C, Jennings C, Palmer J B A, Suzuki-Vidal F 2008 Phys. Rev. Lett. 100 065003Google Scholar
[4] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜 2014 物理学报 63 205203Google Scholar
Sheng L, Li Y, Wu J, Yuan Y, Zhao J Z, Zhang M, Peng B D, Hei D W 2014 Acta Phys. Sin. 63 205203Google Scholar
[5] 盛亮, 李阳, 袁媛, 彭博栋, 李沫, 张美, 赵吉祯, 魏福利, 王亮平, 黑东炜, 邱爱慈 2014 物理学报 63 055201Google Scholar
Sheng L, Li Y, Yuan Y, Peng B D, Li M, Zhang M, Zhao J Z, Wei F L, Wang L P, Hei D W, Qiu A C 2014 Acta Phys. Sin. 63 055201Google Scholar
[6] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[7] Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar
[8] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001Google Scholar
[9] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Jennings C A, Chittenden J P, Velikovich A L, Peterson K J, Vesey R A, Nakhleh C, Waisman E M, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2011 Phys. Plasmas 18 056301Google Scholar
[10] Awe T J, Jennings C A, McBride R D, Cuneo M E, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, Jones M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2014 Phys. Plasmas 21 056303Google Scholar
[11] Awe T J, Peterson K J, Yu E P, McBride R D, Sinars D B, Gomez M R, Jennings C A, Martin M R, Rosenthal S E, Schroen D G, Sefkow A B, Slutz S A, Tomlinson K, Vesey R A 2016 Phys. Rev. Lett. 116 065001Google Scholar
[12] Kantsyrev V L, Chuvatin A S, Safronova A S, Rudakov L I, Esaulov A A, Velikovich A L, Shrestha I, Astanovitsky A, Osborne G C, Shlyaptseva V V, Weller M E, Keim S, Stafford A, Cooper M 2014 Phys. Plasmas 21 031204Google Scholar
[13] Lau Y Y, Zier J C, Rittersdorf I M, Weis M R, Gilgenbach R M 2011 Phys. Rev. E 83 066405Google Scholar
[14] Zier J C, Gilgenbach R M, Chalenski D A, Lau Y Y, French D M, Gomez M R, Patel S G, Rittersdorf I M, Steiner A M, Weis M, Zhang P, Mazarakis M, Cuneo M E, Lopez M 2012 Phys. Plasmas 19 032701Google Scholar
[15] Shelkovenko T A, Pikuz S A, Tilikin I N, Romanova V M, Mishin S N, Atoyan L, Hammer D A 2018 IEEE Trans. Plasma Sci. 46 3741Google Scholar
[16] Shelkovenko T A, Pikuz S A, Tilikin I N, Mingaleev A R, Atoyan L, Hammer D A 2018 Plasma Phys. Rep. 44 236Google Scholar
[17] Shelkovenko T A, Pikuz S A, Hammer D A 2016 Plasma Phy. Rep. 42 226Google Scholar
[18] Rousskikh A G, Zhigalin A S, Oreshkin V I, Baksht R B 2020 Phys. Plasmas 27 033505Google Scholar
[19] Clayson T, Lebedev S V, Suzuki-Vidal F, Burdiak G C, Halliday J W D, Hare J D, Ma J, Suttle L G, Tubman E R 2018 IEEE Trans. Plasma Sci. 46 3734Google Scholar
[20] Hu Min, Kusse B R 2005 Phys. Plasmas 12 102701Google Scholar
[21] Bland S N, Lebedev S V, Chittenden J P, Ampleford D J, Tang G 2004 Phys. Plasmas 11 4911Google Scholar
[22] Swadling G F, Lebedev S V, Hall G N, Patankar S, Stewart N H, Smith R A, Harvey-Thompson A J, Burdiak G C, de Grouchy P, Skidmore J, Suttle L, Suzuki-Vidal F, Bland S N, Kwek K H, Pickworth L, Bennett M, Hare J D, Rozmus W, Yuan J 2014 Rev. Sci. Instrum. 85 11E502Google Scholar
[23] Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K, Nakhleh C 2014 Phys. Rev. Lett. 112 135002Google Scholar
[24] Oreshkin V I 2008 Phys. Plasmas 15 092103Google Scholar
-
图 3 铝膜表面凹槽型周期刻蚀结构共聚焦显微镜扫描图 (a) 刻蚀结构三维形貌图; (b) 二维平面扫描图, 其单个刻蚀周期长度测量值为2003.4 μm; (c) 方框区域深度扫描曲线, 红线间距为10.2 μm; (d) 方框对应区域放大形貌
Figure 3. Scanning graph of the periodical groove structure exploited on Al foil surface which was measured by confocal imaging microscope: (a) Three-dimensional scanning image; (b) surface scanning image which shows that the measured period of structure is 2003.4 μm; (c) the depth curve in which the etched depth between the red lines is 10.2 μm; (d) the enlarged image corresponding to the region of green box in (b).
图 5 不同调制铝膜实验过程激光阴影图对比 (a) 标准铝膜119 ns时刻图(No. 16187); (b) 2 mm刻蚀周期结构铝膜114 ns时刻图(No. 19073); (c) 镀膜铝膜126 ns时刻图(No. 17228); (d) 2 mm刻蚀周期铝膜129 ns时刻图(No. 19074)
Figure 5. Laser shadow graphy images for different Al foils in experiments: (a) Normal Al foil at 119 ns of No. 16187; (b) Al foil with 2 mm etched periodical structure at 114 ns of No. 19073; (c) coated Al foil at 126 ns of No. 17228; (d) Al foil with 2 mm etched periodical structure at 129 ns of No. 19074.
图 6 边界不稳定结构波谱分析 (a) 标准铝膜, No. 16187; (b) 2 mm刻蚀周期结构铝膜, No. 19073; (c) 镀膜铝膜, No. 17228; (d) 2 mm刻蚀周期结构铝膜, No. 19074
Figure 6. Wavelength spectra analysis of the instability structure in experiments: (a) No. 16187 for normal case; (b) No. 19073 for 2 mm periodical structure sample; (c) No. 17228 for coated sample; (d) No. 19074 for 2 mm periodical structure sample.
图 9 2 mm刻蚀周期铝膜激光阴影图序列 (a) 实验发次与对应时刻, No. 19073-114 ns, No. 19074-129 ns, No. 19072-138 ns, No. 19060-158 ns; (b) 114 ns时刻下局部结构放大伪色图; (c) 129 ns时刻下局部结构放大伪色图; (b), (c)中右侧标尺代表颜色域与灰度值的对应关系
Figure 9. Laser shadow graphy image sequence for the Al foils with 2 mm periodical structure: (a) Corresponding shot numbers are No. 19073-114 ns, No. 19074-129 ns, No. 19072-138 ns, No. 19060-158 ns; (b) enlarged image of the box at 114 ns; (c) enlarged image of the box at 129 ns. Flase color has been added in (b) and (c) where the corresponding relationship between color and gray-scale value is shown in the label on the right.
图 10 初始薄膜刻蚀结构与实验发展过程结构对照 (a) 初始薄膜实物放置图; (b)初始状态侧向激光阴影成像图; (c) 实验激光阴影成像图
Figure 10. Initial structure of foil surface comparing with developing plasma structure in experiments: (a) The photograph of actual etched foil; (b) the side-on laser shadow graphy image of Al foil before experiment; (c) corresponding shadow graphy image in experiment.
表 1 金属薄膜参数
Table 1. Parameters of the foils used in the exploding experiments.
材料M 厚度 h/μm 刻蚀槽深d/μm 刻蚀周期p/mm 宽度w/mm 长度l/mm 中心距r/mm 铝(刻蚀) 30 10 2 1 2 10 铝(镀膜) 20 + 10 (PI) # # 1 2 10 铝(标准) 20 # # 1 2 10 注: PI表示聚酰亚胺有机膜, #表示无刻蚀结构. -
[1] Jones B, Deeney C, McKenney J L, Garasi C J, Mehlhorn T A, Robinson A C, Wunsch S E, Bland S N, Lebedev S V, Chittenden J P, Bott S C, Ampleford D J, Palmer J B A, Rapley J, Hall G N, Oliver B V 2005 Phys. Rev. Lett. 95 225001Google Scholar
[2] Hall G N 2007 Ph. D. Dissertation (London: Science of the University of London)
[3] Hall G N, Chittenden J P, Bland S N, Lebedev S V, Bott S C, Jennings C, Palmer J B A, Suzuki-Vidal F 2008 Phys. Rev. Lett. 100 065003Google Scholar
[4] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜 2014 物理学报 63 205203Google Scholar
Sheng L, Li Y, Wu J, Yuan Y, Zhao J Z, Zhang M, Peng B D, Hei D W 2014 Acta Phys. Sin. 63 205203Google Scholar
[5] 盛亮, 李阳, 袁媛, 彭博栋, 李沫, 张美, 赵吉祯, 魏福利, 王亮平, 黑东炜, 邱爱慈 2014 物理学报 63 055201Google Scholar
Sheng L, Li Y, Yuan Y, Peng B D, Li M, Zhang M, Zhao J Z, Wei F L, Wang L P, Hei D W, Qiu A C 2014 Acta Phys. Sin. 63 055201Google Scholar
[6] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[7] Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar
[8] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001Google Scholar
[9] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Jennings C A, Chittenden J P, Velikovich A L, Peterson K J, Vesey R A, Nakhleh C, Waisman E M, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2011 Phys. Plasmas 18 056301Google Scholar
[10] Awe T J, Jennings C A, McBride R D, Cuneo M E, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, Jones M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2014 Phys. Plasmas 21 056303Google Scholar
[11] Awe T J, Peterson K J, Yu E P, McBride R D, Sinars D B, Gomez M R, Jennings C A, Martin M R, Rosenthal S E, Schroen D G, Sefkow A B, Slutz S A, Tomlinson K, Vesey R A 2016 Phys. Rev. Lett. 116 065001Google Scholar
[12] Kantsyrev V L, Chuvatin A S, Safronova A S, Rudakov L I, Esaulov A A, Velikovich A L, Shrestha I, Astanovitsky A, Osborne G C, Shlyaptseva V V, Weller M E, Keim S, Stafford A, Cooper M 2014 Phys. Plasmas 21 031204Google Scholar
[13] Lau Y Y, Zier J C, Rittersdorf I M, Weis M R, Gilgenbach R M 2011 Phys. Rev. E 83 066405Google Scholar
[14] Zier J C, Gilgenbach R M, Chalenski D A, Lau Y Y, French D M, Gomez M R, Patel S G, Rittersdorf I M, Steiner A M, Weis M, Zhang P, Mazarakis M, Cuneo M E, Lopez M 2012 Phys. Plasmas 19 032701Google Scholar
[15] Shelkovenko T A, Pikuz S A, Tilikin I N, Romanova V M, Mishin S N, Atoyan L, Hammer D A 2018 IEEE Trans. Plasma Sci. 46 3741Google Scholar
[16] Shelkovenko T A, Pikuz S A, Tilikin I N, Mingaleev A R, Atoyan L, Hammer D A 2018 Plasma Phys. Rep. 44 236Google Scholar
[17] Shelkovenko T A, Pikuz S A, Hammer D A 2016 Plasma Phy. Rep. 42 226Google Scholar
[18] Rousskikh A G, Zhigalin A S, Oreshkin V I, Baksht R B 2020 Phys. Plasmas 27 033505Google Scholar
[19] Clayson T, Lebedev S V, Suzuki-Vidal F, Burdiak G C, Halliday J W D, Hare J D, Ma J, Suttle L G, Tubman E R 2018 IEEE Trans. Plasma Sci. 46 3734Google Scholar
[20] Hu Min, Kusse B R 2005 Phys. Plasmas 12 102701Google Scholar
[21] Bland S N, Lebedev S V, Chittenden J P, Ampleford D J, Tang G 2004 Phys. Plasmas 11 4911Google Scholar
[22] Swadling G F, Lebedev S V, Hall G N, Patankar S, Stewart N H, Smith R A, Harvey-Thompson A J, Burdiak G C, de Grouchy P, Skidmore J, Suttle L, Suzuki-Vidal F, Bland S N, Kwek K H, Pickworth L, Bennett M, Hare J D, Rozmus W, Yuan J 2014 Rev. Sci. Instrum. 85 11E502Google Scholar
[23] Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K, Nakhleh C 2014 Phys. Rev. Lett. 112 135002Google Scholar
[24] Oreshkin V I 2008 Phys. Plasmas 15 092103Google Scholar
Catalog
Metrics
- Abstract views: 4583
- PDF Downloads: 49
- Cited By: 0