-
The valence electron structures and thermal and electric properties of Na||Sb-Pb-Sn liquid metal battery are systematically studies with solid and molecular empirical electron theory (EET). The theoretical studies show that the thermal and electric properties are strongly related to the valence electron structure of electrode. The cathodic alloys Na1–xIAx (IA = K, Rb, Cs) are designed by doping IA group alkali metals (K, Rb, Cs) into Na electrode since the melting points of IA group metals (K, Rb, Cs) are all lower than that of sodium. The theoretical bond lengths and cohesive energy of cathodic alloys Na1–xIAx match the experimental ones well. The theoretical studies show the decreasing tendency of melting point, cohesive energy and electric potential with increasing doping content x in Na1–xIAx alloys, which is due to the modulation of valence electron structure of IA group dopants. According to the analyses of valence structures, the number of lattice electrons decreases with the increasing of the doping content x for the cathodic alloy and causes the melting point, electric potential and cohesive energy to decline. It reveals that the IA group dopant modulates the valence electron structure of cathodic alloy, and induces the electron transformation from lattice electron to covalent electron in s orbital. The anode products such as NaSb3, NaSn, Na15Sn4 and NaPb are formed by transporting Na ions into the anode alloy Sb-Sn-Pb. The calculated bond-lengths and melting points fit the observed ones well for these anode products. Owing to their complex structures with various atomic occupations in unit cell, the thermal property or electric property is not only relative to lattice electron, but also depends on the covalent electron. The sublattice plays an important role in the forming of the four anode products. The lattice electrons are supplied by Na at 4f sites in Na3Sb, Na at 16e and Sn at 32g sites in NaSn, Sn at 16c and Na at 48e sites in Na15Sn4, and Na at 16f and Pb at 32g sites in NaPb, respectively. The open-gate voltage is closely related to the lattice electrons and inversely proportional to the average number of lattice electrons per atom. The open-gate voltage of NaSb3 is the largest among the anode products, however, its averaged number of lattice electron per atom is the least. Since the lattice electron number of NaSn is the largest among the anode products, the open-gate voltage of NaSn is the least. It implies that the lattice electron plays a very important role in Na||Sb-Pb-Sn liquid metal battery, which can modulate the valence electron structures and thermal and electric properties. -
Keywords:
- solid and molecular empirical electron theory /
- liquid metal battery /
- valence electron structure /
- open gate voltage
[1] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar
[2] Starkey J P 2003 Power. Eng. 17 30Google Scholar
[3] Shen C, Wang H 2019 J. Phy: Conf. Ser. 1347 012087Google Scholar
[4] 邓浩, 张宁, 冯哲圣 2010 中国电子学会第十六届电子元件学术年会论文集 , 中国昆山 2010-09-13 第110页
Deng H, Zhang N, Feng Z S 2010 Proceedings of the 16 th Annual Conference on Electronic Components of the Chinese Society of Electronics Kun Shan, China September 13, 2010 P110 (in Chinese)
[5] Oshima T, Kajita M, Okuno A 2004 Int. J. Appl. Ceram. Technol. 1 269Google Scholar
[6] 蒋凯, 李浩秒, 李威, 陈时杰 2013 电力系统自动化 37 47Google Scholar
Jiang K, Li H M, Li W, Chen S J 2013 Aut. Electr. Power Syst. 37 47Google Scholar
[7] Agruss B 1963 J. Eleetrochem. Soc. 110 1097Google Scholar
[8] Bradwell D J, Kim H, Sirk A H C, Sadoway D R 2012 J. Am. Chem. Soc. 134 1895Google Scholar
[9] 彭勃, 郭姣姣, 张坤, 王玉平 2017 电源技术 3 498Google Scholar
Peng B, Guo J J, Zhang K, Wang Y P 2017 Chin. J. Power Sources 3 498Google Scholar
[10] 姜治安, 华一新, 杨建红, 颜恒维, 王成智 2017 电源技术 41 1213Google Scholar
Jiang Z A, Hua X Y, Yang J H, Yan H W, Wang C Z 2017 Chin. J. Power Sources 41 1213Google Scholar
[11] Xu J L, Kjos O S, Osen K S, Martinez A M, Kongstein O E, Haarberg G M 2016 J. Power Sources 332 274Google Scholar
[12] Xu J L, Martinez A M, Osen K S, Kjos O S, Kongstein O E, Haarberg G M 2017 J. Electrochem. Soc. 164 A2335Google Scholar
[13] 陶宏伟 2014 硕士学位论文(武汉: 华中科技大学)
Tao H 2014 M. S. Dissertation (Wuhan: HuaZhong University of Science and Technology) (in Chinese)
[14] Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y, Zhao X 2020 ACS Appl. Energy. Mater. 3 5361Google Scholar
[15] 余澍 2017 博士学位论文(厦门: 厦门大学)
Yu S 2017 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)
[16] 李慧, 吴川, 吴锋, 白莹 2014 化学学报 1 21Google Scholar
Li H, Wu C, Wu F, Bai Y 2014 Acta Chim. Sin. 1 21Google Scholar
[17] 宋刘斌, 黎安娴, 肖忠良 2019 化工学报 6 2051Google Scholar
Song L B, Li A X, Xiao Z L 2019 J. Chem. Ind. Eng. 6 2051Google Scholar
[18] 徐宇虹, 尹鸽平, 左朋建 2008 化学进展 20 1827Google Scholar
Xu H Y, Yi G P, Zuo J P 2008 Prog. Chem. 20 1827Google Scholar
[19] 侯贤华, 胡社军, 彭薇, 张志文, 汝强, 余洪文 2010 分子科学学报 26 400Google Scholar
Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q, Yu H W 2010 J. Mol. Sci. 26 400Google Scholar
[20] 余瑞璜 1978 科学通报 4 217Google Scholar
Yu R H 1978 Chin. Sci. Bull. 4 217Google Scholar
[21] Guo Y Q, Yu R H, Zhang R L, Zhang X H, Tao K 1998 J. Phys. Chem. B 102 9Google Scholar
[22] Li Z L, Xu H B, Gong S K 2004 J. Phys. Chem. B 108 15165Google Scholar
[23] Wang T, Guo Y Q 2017 Chin. Phys. B 26 103101Google Scholar
[24] Li L, Xing B S 2009 Mater. Chem. Phys. 117 276Google Scholar
[25] Xue Z Q, Guo Y Q 2016 Chin. Phys. B 25 169Google Scholar
[26] 孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 10 107101Google Scholar
Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 10 107101Google Scholar
[27] 吴文霞, 郭永权, 李安华, 李卫 2008 物理学报 57 2486Google Scholar
Wu W X, Guo Y Q, Li A H, Li W 2008 Acta Phys. Sin. 57 2486Google Scholar
[28] 余瑞璜 1981 科学通报 4 206Google Scholar
Yu R H 1981 Chin. Sci. Bull. 4 206Google Scholar
[29] 林成, 黄士星, 尹桂丽, 赵永庆 2016 兵器材料科学与工程 39 110
Lin C, Huang S X, Yi J L, Zhao Y Q 2016 Ordnance Mater. Sci. Eng. 39 110
[30] 张建民 2000 陕西师范大学学报 3 47Google Scholar
Zang J M 2000 Journal of Shanxi Normal University 3 47Google Scholar
[31] 孟振华, 郭永权 2012 科学通报 28 2693Google Scholar
Meng Z H, Guo Y Q 2012 Chin. Sci. Bull. 28 2693Google Scholar
[32] 基泰尔 C著 (项金钟, 吴兴惠 译) 2011 固体物理导论 (北京: 化学工业出版社) 第38−39页
Kittle C (translated by Xiang J Z, Wu X H) 2011 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp38−397 (in Chinese)
[33] Li H M, Wang K L, Cheng S J, Jiang K 2016 ACS Appl. Mater. Inter. 8 12830Google Scholar
[34] Ouchi T, Sadoway D R 2017 J. Power Sources. 357 158Google Scholar
[35] 梁基谢夫 著 (郭青蔚 译) 2008 金属二元系相图手册 (北京: 化学工业出版社) 第975−977页
Liang Jishev (translated by Guo Q W) 2008 Metal Binary Phase Diagram Handbook (Beijing: Chemical Industry Press) pp975−977) (in Chinese)
-
表 1 Na1–xIAx合金键距计算
Table 1. Calculation of bond distances of Na1–xIAx alloy.
Na1–xIAx $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å ${\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å $ {n}_{\rm{A}}$ $ { I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/${ \text{Å} }$ ${\bar{D} }_{\mathrm{uv} }\left({n}_{\alpha }\right)/{ \text{Å} }$ $ {n}_{\alpha } $ |∆D|/${\text{Å} }$ Na 8 3.7296 3.7502 0.05160 6 4.3004 4.3210 0.00810 0.0206 Na0.99K0.01 8 3.7381 3.7538 0.05220 6 4.3103 4.3260 0.00820 0.0157 Na0.99Rb0.01 8 3.7430 3.7572 0.05220 6 4.3157 4.3300 0.00820 0.0143 Na0.99Cs0.01 8 3.7454 3.7628 0.05220 6 4.3187 4.3361 0.00810 0.0175 Na0.98K0.02 8 3.7465 3.7574 0.05290 6 4.3202 4.3310 0.00823 0.0108 Na0.98Rb0.02 8 3.7564 3.7643 0.05290 6 4.3310 4.3389 0.00820 0.0079 Na0.98Cs0.02 8 3.7611 3.7755 0.05290 6 4.3370 4.3513 0.00817 0.0143 Na0.97K0.03 8 3.7550 3.7610 0.05348 6 4.3301 4.3361 0.00829 0.0060 Na0.97Rb0.03 8 3.7697 3.7713 0.05351 6 4.3463 4.3479 0.00825 0.0016 Na0.97Cs0.03 8 3.7769 3.7881 0.05354 6 4.3552 4.3665 0.00821 0.0113 Na0.96K0.04 8 3.7635 3.7647 0.05411 6 4.3399 4.3411 0.00834 0.0012 Na0.96Rb0.04 8 3.7831 3.7785 0.05415 6 4.3616 4.3570 0.00829 0.0047 Na0.96Cs0.04 8 3.7926 3.8009 0.05419 6 4.3735 4.3818 0.00824 0.0082 Na0.95K0.05 8 3.7719 3.7684 0.05474 6 4.3498 4.3463 0.00840 0.0036 Na0.95Rb0.05 8 3.7965 3.7856 0.05479 6 4.3769 4.3661 0.00834 0.0109 Na0.95Cs0.05 8 3.8084 3.8136 0.05484 6 4.3918 4.3971 0.00827 0.0052 表 2 Na阴极合金的价电子结构
Table 2. Valence electron structures of cathode Na based alloy.
Na1–xIAx nc ns np nl R(1) Na 0.4614 0.4606 0.0008 0.5386 1.4181 Na0.99K0.01 0.4668 0.4660 0.0008 0.5332 1.4217 Na0.98K0.02 0.4722 0.4713 0.0008 0.5278 1.4254 Na0.97K0.03 0.4776 0.4767 0.0009 0.5224 1.4290 Na0.96K0.04 0.4830 0.4821 0.0009 0.5170 1.4327 Na0.95K0.05 0.4884 0.4875 0.0009 0.5116 1.4363 Na0.99Rb0.01 0.4668 0.4660 0.0008 0.5332 1.4235 Na0.98Rb0.02 0.4722 0.4713 0.0008 0.5278 1.4289 Na0.97Rb0.03 0.4776 0.4767 0.0009 0.5224 1.4343 Na0.96Rb0.04 0.4830 0.4821 0.0009 0.5170 1.4397 Na0.95Rb0.05 0.4884 0.4875 0.0009 0.5116 1.4451 Na0.99Cs0.01 0.4668 0.4660 0.0008 0.5332 1.4263 Na0.98Cs0.02 0.4722 0.4713 0.0008 0.5278 1.4345 Na0.97Cs0.03 0.4776 0.4767 0.0009 0.5224 1.4428 Na0.96Cs0.04 0.4830 0.4821 0.0009 0.5170 1.4510 Na0.95Cs0.05 0.4884 0.4875 0.0009 0.5116 1.4592 表 3 阴极Na1–xIAx合金的熔点、结合能与电势
Table 3. Melting point, cohesive energy, and electric potentials of cathode Na1–xIAx alloy.
掺杂量x 原子 杂阶 掺杂 杂阶 $ \bar{T}_{\rm{m}} $/K $ {E}_{\mathrm{c}} $/(eV·atom–1) $ {\bar{E}}_{\mathrm{c}} $/(eV·atom–1) $\left| { {\Delta E}_{\mathrm{c} } }/{ {E}_{\mathrm{c} } }\right|/{\%}$ 电势/V 0 Na 3 — — 336.76 1.113 1.165 4.67 0.1482 0.01 Na 2 K 4 336.64 1.111 1.164 4.77 0.1481 0.01 Na 2 Rb 4 336.45 1.110 1.163 4.77 0.1480 0.01 Na 2 Cs 4 336.02 1.103 1.161 5.26 0.1478 0.02 Na 2 K 4 336.64 1.109 1.163 4.39 0.1481 0.02 Na 2 Rb 4 336.14 1.108 1.161 4.78 0.1478 0.02 Na 2 Cs 4 335.29 1.110 1.158 4.32 0.1475 0.03 Na 2 K 4 336.60 1.103 1.162 5.35 0.1480 0.03 Na 2 Rb 4 335.85 1.109 1.159 4.51 0.1476 0.03 Na 2 Cs 4 334.58 1.108 1.154 4.15 0.1471 0.04 Na 2 K 4 336.57 1.107 1.162 4.97 0.1479 0.04 Na 2 Rb 4 335.57 1.103 1.157 4.90 0.1474 0.04 Na 2 Cs 4 333.88 1.109 1.151 3.79 0.1467 0.05 Na 2 K 4 336.55 1.108 1.161 4.78 0.1478 0.05 Na 2 Rb 4 335.30 1.107 1.156 4.43 0.1472 0.05 Na 2 Cs 4 333.20 1.108 1.147 3.52 0.1463 表 4 正极合金的晶体结构
Table 4. Crystal structures of anode alloys.
合金 空间群 a/$\text{Å}$ b/$\text{Å}$ c/$\text{Å}$ 原子 占位 x y z Sb 2c 0.3333 0.6666 0.2500 Na3Sb P63mmc (194) 5.355 5.355 9.496 Na1 2b 0 0 0.2500 Na2 4f 0.3333 0.6666 0.5830 NaSn I41/acd (142) 10.460 10.460 17.390 Sn 32g 0.0696 0.1260 0.9362 Na1 16f 0.6258 0.8758 0.1250 Na2 16e 0.8724 0 0.2500 Sn 16c 0.2083 0.2083 0.2083 Na15Sn4 I43d (220) 13.140 13.140 13.140 Na1 12a 0.3750 0 0.2500 Na2 48e 0.1270 0.1548 0.9670 Pb 32g 0.0696 0.1186 0.9383 NaPb I41/acd (142) 10.580 10.580 17.746 Na1 16e 0.2500 0.1250 0.5000 Na2 16f 0.1250 0.3750 0.6250 表 5 阳极合金的键距
Table 5. Bond distances of the anode alloy.
合金 键序 成键原子 $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/$\text{Å}$ $ {\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right)/$$\text{Å}$ $ {n}_{\alpha } $ |ΔD|/$\text{Å}$ Na3Sb 1 Sb-Na2 6 3.0975 3.0910 0.39055 0.0065 2 Sb-Na1 4 3.1685 3.1620 0.19416 0.0065 3 Na1-Na2 4 3.1780 3.1715 0.18030 0.0065 4 Na1-Na1 6 3.4769 3.4704 0.03738 0.0065 5 Sb-Na1 12 3.4813 3.4748 0.05846 0.0065 6 Na2-Na1 12 3.4813 3.4748 0.05630 0.0065 7 Na2-Na1 12 4.4310 4.4245 0.00147 0.0065 8 Na2-Na2 2 4.7575 4.7510 0.00064 0.0065 NaSn 1 Sn-Sn 2 2.9748 3.0201 0.42650 0.0453 2 Sn-Sn 4 2.9925 3.0378 0.39849 0.0453 3 Na1-Sn 4 3.3355 3.3808 0.07506 0.0453 4 Na1-Sn 4 3.3592 3.4045 0.06854 0.0453 5 Na2-Sn 4 3.3974 3.4427 0.13064 0.0453 6 Na2-Sn 4 3.4231 3.4684 0.11837 0.0453 7 Na1-Sn 4 3.4870 3.5323 0.04197 0.0453 8 Na2-Sn 2 3.5225 3.5678 0.08083 0.0453 9 Na2-Sn 4 3.5482 3.5935 0.07324 0.0453 10 Na1-Na2 4 3.6148 3.6601 0.03985 0.0453 11 Na1-Na2 4 3.6658 3.7111 0.03277 0.0453 12 Na1-Na1 1 3.7218 3.7671 0.01197 0.0453 13 Sn-Sn 2 3.7406 3.7859 0.02257 0.0453 14 Sn-Sn 2 4.3780 4.4233 0.00196 0.0453 15 Na1-Na2 4 4.4919 4.5372 0.00138 0.0453 16 Na1-Sn 4 4.6674 4.7127 0.00045 0.0453 17 Na2-Na2 1 4.7095 4.7548 0.00132 0.0453 Na15Sn4 1 Sn-Na2 24 3.2378 3.2854 0.20850 0.0476 2 Na2-Na2 24 3.2624 3.3100 0.19499 0.0476 3 Na1-Na2 24 3.3425 3.3901 0.11017 0.0476 4 Na2-Na2 12 3.3468 3.3944 0.14830 0.0476 5 Sn-Na2 24 3.4049 3.4525 0.12127 0.0476 6 Sn-Na2 24 3.4189 3.4665 0.11589 0.0476 7 Na1-Na2 24 3.5026 3.5502 0.06555 0.0476 8 Sn-Na1 24 3.5482 3.5958 0.05582 0.0476 9 Na2-Na2 24 3.8138 3.8614 0.03261 0.047 10 Na2-Na2 24 3.9794 4.0270 0.01906 0.0476 11 Na2-Na2 12 4.1712 4.2188 0.01023 0.0476 NaPb 1 Pb-Pb 2 3.1464 3.1452 0.33477 0.0013 2 Pb-Pb 4 3.1618 3.1606 0.31556 0.0013 3 Pb-Na2 4 3.3653 3.3641 0.19895 0.0013 4 Pb-Na1 4 3.3888 3.3876 0.08237 0.0013 5 Pb-Na2 4 3.4215 3.4203 0.16035 0.0013 6 Pb-Na2 4 3.4847 3.4835 0.12582 0.0013 7 Pb-Na1 4 3.4929 3.4917 0.05524 0.0013 8 Pb-Na1 4 3.5549 3.5537 0.04354 0.0013 9 Pb-Na1 4 3.6172 3.6160 0.03428 0.0013 10 Pb-Pb 2 3.6418 3.6406 0.05001 0.0013 11 Na1-Na2 8 3.6967 3.6955 0.03479 0.0013 12 Na2-Na2 1 3.7406 3.7394 0.06488 0.0013 13 Pb-Pb 2 4.4008 4.3996 0.00272 0.0013 14 Na1-Na2 4 4.5455 4.5443 0.00134 0.0013 15 Pb-Na2 4 4.7513 4.7501 0.00097 0.0013 表 6 阳极产物的价电子结构
Table 6. Valence electron structures of anode products
合金 原子 杂阶 nc ns np nl R(1) Na3Sb Sb 2 3.0000 0.5694 2.4306 0 1.4279 Na1 4 1.0000 0.9982 0.0018 0 1.3070 Na2 2 0.4614 0.4606 0.0008 0.5386 1.4181 NaSn Sn 1 2.0000 0 2.0000 2.0000 1.3990 Na1 1 1.0000 0.9982 0.0018 0 1.3070 Na2 4 0 0 0 1.0000 1.5133 Na15Sn4 Sn 4 3.6638 0.8319 2.8319 0.3362 1.3990 Na1 4 1.0000 0.9982 0.0018 0 1.3070 Na2 3 0.5350 0.5340 0.0010 0.4650 1.4029 NaPb Pb 2 2.0962 0.0481 2.0481 1.9038 1.4300 Na1 4 1.0000 0.9982 0.0018 0 1.3070 Na2 1 0 0 0 1.0000 1.5133 表 7 正极合金的熔点、结合能与电势
Table 7. Melting point, cohesive energy, and electric potentials of anode alloy.
合金 Tm/K [35] $ \bar{T}_{\rm{m}} $/K |${\Delta {T}_{\mathrm{m} } }/{ {T}_{\mathrm{m} } }$|/% 电势/V n β Ec/(eV·atom–1) Na3Sb 1129 1142.96 1.2 1.1520 4 0.60 1.766 NaSn 851 813.16 4.4 0.7343 5 0.60 2.103 Na15Sn4 681 746.16 9.6 0.9074 3 0.71 1.318 NaPb 645 630.68 2.2 0.8263 6 0.60 1.559 表 8 电池的开路电压
Table 8. Open gate voltages of the battery.
Na1–xIAx 开路电压/V Na3Sb NaSn Na15Sn4 NaPb Na 1.0038 0.5861 0.7592 0.6781 Na0.09K0.01 1.0039 0.5862 0.7593 0.6782 Na0.98K0.02 1.0039 0.5862 0.7593 0.6782 Na0.97K0.03 1.0040 0.5863 0.7594 0.6783 Na0.96K0.04 1.0041 0.5864 0.7595 0.6784 Na0.95K0.05 1.0042 0.5865 0.7596 0.6785 Na0.99Rb0.01 1.0040 0.5863 0.7594 0.6783 Na0.98Rb0.02 1.0042 0.5865 0.7596 0.6785 Na0.97Rb0.03 1.0044 0.5867 0.7598 0.6787 Na0.96Rb0.04 1.0046 0.5869 0.7600 0.6789 Na0.95Rb0.05 1.0048 0.5871 0.7602 0.6791 Na0.99Cs0.01 1.0042 0.5865 0.7596 0.6785 Na0.98Cs0.02 1.0045 0.5868 0.7599 0.6788 Na0.97Cs0.03 1.0049 0.5872 0.7603 0.6792 Na0.96Cs0.04 1.0053 0.5876 0.7607 0.6796 Na0.95Cs0.05 1.0057 0.5880 0.7611 0.6800 nl/atom 0.2693 1.2500 0.3645 1.0682 表 A1 IA族元素的乙种杂化表
Table A1. B type hybrid table of IA group
σ 1 2 3 4 Chσ 1 0.5386 0.4650 0 Ctσ 0 0.4616 0.5350 1 nTσ 1 1 1 1 nlσ 1 0.5386 0.4650 0 ncσ 0 0.4616 0.5350 1 Rσ(1) H 0.3708 0.3289 0.3222 0.2800 Li 1.3260 1.2089 1.1440 0.9860 Na 1.5133 1.4551 1.4308 1.3070 K 1.9628 1.8794 1.8601 1.7820 Rb 2.0870 2.0270 2.0175 1.9570 Cs 2.2140 2.2260 2.2279 2.2400 注: $ l, \; m, \;n, \; \tau $: 1 0 0 0
$l{'}, \; m{'}, \;n{'}, \; \tau {'}$: 0.9982 0.0018 0 0表 A2 VA族元素的甲种杂化表
Table A2. A type hybrid table of VA group
σ 1 2 3 4 Chσ 1 0.5694 0.1983 0 Ctσ 0 0.4306 0.8017 1 nTσ 3 or 5 3 or 5 3 or 5 3 or 5 nlσ 0 0 0 0 ncσ 3 or 5 3 or 5 3 or 5 3 or 5 Rσ (1) N 0.7000 0.7517 0.7973 0.8200 P 1.0980 1.1173 1.1343 1.1428 As 1.1800 1.2390 1.2911 1.3170 Sb 1.3560 1.4279 1.4919 1.5230 Bi 1.3990 1.4455 1.5044 1.5290 注: $ l, \; m, \; n, \; \tau $: 1 2 0 1; $ l{'}, \; m{'}, \; n{'}, \; \tau {'} $: 0 3 0 1 表 A3 IVA族元素的甲种杂化表
Table A3. A type hybrid table of IVA group
σ 1 2 3 4 5 6 Chσ 1 0.9502 0.8320 0.1681 0.0481 0 Ctσ 0 0.0498 0.1680 0.8319 0.9519 1 nTσ 4 4 4 4 4 4 nlσ 2 1.9040 1.6640 0.3360 0.0960 0 ncσ 2 2.0960 2.3360 3.6640 3.9040 4 Rσ(1) C 0.7630 0.7630 0.7630 0.7630 0.7630 0.7630 Si 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 Ge 1.2230 1.2230 1.2230 1.2230 1.2230 1.2230 Sn 1.3990 1.3990 1.3990 1.3990 1.3990 1.3990 Pb 1.4300 1.4300 1.4300 1.4300 1.4300 1.4300 注: $ l, \; m, \; n, \; \tau $; 2 2 0 0; $ l{'}, \; m{'}, \; n{'}, \; \tau {'}; $ 1 3 0 1 -
[1] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar
[2] Starkey J P 2003 Power. Eng. 17 30Google Scholar
[3] Shen C, Wang H 2019 J. Phy: Conf. Ser. 1347 012087Google Scholar
[4] 邓浩, 张宁, 冯哲圣 2010 中国电子学会第十六届电子元件学术年会论文集 , 中国昆山 2010-09-13 第110页
Deng H, Zhang N, Feng Z S 2010 Proceedings of the 16 th Annual Conference on Electronic Components of the Chinese Society of Electronics Kun Shan, China September 13, 2010 P110 (in Chinese)
[5] Oshima T, Kajita M, Okuno A 2004 Int. J. Appl. Ceram. Technol. 1 269Google Scholar
[6] 蒋凯, 李浩秒, 李威, 陈时杰 2013 电力系统自动化 37 47Google Scholar
Jiang K, Li H M, Li W, Chen S J 2013 Aut. Electr. Power Syst. 37 47Google Scholar
[7] Agruss B 1963 J. Eleetrochem. Soc. 110 1097Google Scholar
[8] Bradwell D J, Kim H, Sirk A H C, Sadoway D R 2012 J. Am. Chem. Soc. 134 1895Google Scholar
[9] 彭勃, 郭姣姣, 张坤, 王玉平 2017 电源技术 3 498Google Scholar
Peng B, Guo J J, Zhang K, Wang Y P 2017 Chin. J. Power Sources 3 498Google Scholar
[10] 姜治安, 华一新, 杨建红, 颜恒维, 王成智 2017 电源技术 41 1213Google Scholar
Jiang Z A, Hua X Y, Yang J H, Yan H W, Wang C Z 2017 Chin. J. Power Sources 41 1213Google Scholar
[11] Xu J L, Kjos O S, Osen K S, Martinez A M, Kongstein O E, Haarberg G M 2016 J. Power Sources 332 274Google Scholar
[12] Xu J L, Martinez A M, Osen K S, Kjos O S, Kongstein O E, Haarberg G M 2017 J. Electrochem. Soc. 164 A2335Google Scholar
[13] 陶宏伟 2014 硕士学位论文(武汉: 华中科技大学)
Tao H 2014 M. S. Dissertation (Wuhan: HuaZhong University of Science and Technology) (in Chinese)
[14] Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y, Zhao X 2020 ACS Appl. Energy. Mater. 3 5361Google Scholar
[15] 余澍 2017 博士学位论文(厦门: 厦门大学)
Yu S 2017 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)
[16] 李慧, 吴川, 吴锋, 白莹 2014 化学学报 1 21Google Scholar
Li H, Wu C, Wu F, Bai Y 2014 Acta Chim. Sin. 1 21Google Scholar
[17] 宋刘斌, 黎安娴, 肖忠良 2019 化工学报 6 2051Google Scholar
Song L B, Li A X, Xiao Z L 2019 J. Chem. Ind. Eng. 6 2051Google Scholar
[18] 徐宇虹, 尹鸽平, 左朋建 2008 化学进展 20 1827Google Scholar
Xu H Y, Yi G P, Zuo J P 2008 Prog. Chem. 20 1827Google Scholar
[19] 侯贤华, 胡社军, 彭薇, 张志文, 汝强, 余洪文 2010 分子科学学报 26 400Google Scholar
Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q, Yu H W 2010 J. Mol. Sci. 26 400Google Scholar
[20] 余瑞璜 1978 科学通报 4 217Google Scholar
Yu R H 1978 Chin. Sci. Bull. 4 217Google Scholar
[21] Guo Y Q, Yu R H, Zhang R L, Zhang X H, Tao K 1998 J. Phys. Chem. B 102 9Google Scholar
[22] Li Z L, Xu H B, Gong S K 2004 J. Phys. Chem. B 108 15165Google Scholar
[23] Wang T, Guo Y Q 2017 Chin. Phys. B 26 103101Google Scholar
[24] Li L, Xing B S 2009 Mater. Chem. Phys. 117 276Google Scholar
[25] Xue Z Q, Guo Y Q 2016 Chin. Phys. B 25 169Google Scholar
[26] 孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 10 107101Google Scholar
Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 10 107101Google Scholar
[27] 吴文霞, 郭永权, 李安华, 李卫 2008 物理学报 57 2486Google Scholar
Wu W X, Guo Y Q, Li A H, Li W 2008 Acta Phys. Sin. 57 2486Google Scholar
[28] 余瑞璜 1981 科学通报 4 206Google Scholar
Yu R H 1981 Chin. Sci. Bull. 4 206Google Scholar
[29] 林成, 黄士星, 尹桂丽, 赵永庆 2016 兵器材料科学与工程 39 110
Lin C, Huang S X, Yi J L, Zhao Y Q 2016 Ordnance Mater. Sci. Eng. 39 110
[30] 张建民 2000 陕西师范大学学报 3 47Google Scholar
Zang J M 2000 Journal of Shanxi Normal University 3 47Google Scholar
[31] 孟振华, 郭永权 2012 科学通报 28 2693Google Scholar
Meng Z H, Guo Y Q 2012 Chin. Sci. Bull. 28 2693Google Scholar
[32] 基泰尔 C著 (项金钟, 吴兴惠 译) 2011 固体物理导论 (北京: 化学工业出版社) 第38−39页
Kittle C (translated by Xiang J Z, Wu X H) 2011 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp38−397 (in Chinese)
[33] Li H M, Wang K L, Cheng S J, Jiang K 2016 ACS Appl. Mater. Inter. 8 12830Google Scholar
[34] Ouchi T, Sadoway D R 2017 J. Power Sources. 357 158Google Scholar
[35] 梁基谢夫 著 (郭青蔚 译) 2008 金属二元系相图手册 (北京: 化学工业出版社) 第975−977页
Liang Jishev (translated by Guo Q W) 2008 Metal Binary Phase Diagram Handbook (Beijing: Chemical Industry Press) pp975−977) (in Chinese)
Catalog
Metrics
- Abstract views: 6721
- PDF Downloads: 73
- Cited By: 0