Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of thermic and electric properties and valence electron structure for metallic electrodes of Na||Sb-Pb-Sn liquid metal battery

Zhang Jian Wang Xin-Qiao Su Tong Chen Ying Guo Yong-Quan

Citation:

Calculation of thermic and electric properties and valence electron structure for metallic electrodes of Na||Sb-Pb-Sn liquid metal battery

Zhang Jian, Wang Xin-Qiao, Su Tong, Chen Ying, Guo Yong-Quan
PDF
HTML
Get Citation
  • The valence electron structures and thermal and electric properties of Na||Sb-Pb-Sn liquid metal battery are systematically studies with solid and molecular empirical electron theory (EET). The theoretical studies show that the thermal and electric properties are strongly related to the valence electron structure of electrode. The cathodic alloys Na1–xIAx (IA = K, Rb, Cs) are designed by doping IA group alkali metals (K, Rb, Cs) into Na electrode since the melting points of IA group metals (K, Rb, Cs) are all lower than that of sodium. The theoretical bond lengths and cohesive energy of cathodic alloys Na1–xIAx match the experimental ones well. The theoretical studies show the decreasing tendency of melting point, cohesive energy and electric potential with increasing doping content x in Na1–xIAx alloys, which is due to the modulation of valence electron structure of IA group dopants. According to the analyses of valence structures, the number of lattice electrons decreases with the increasing of the doping content x for the cathodic alloy and causes the melting point, electric potential and cohesive energy to decline. It reveals that the IA group dopant modulates the valence electron structure of cathodic alloy, and induces the electron transformation from lattice electron to covalent electron in s orbital. The anode products such as NaSb3, NaSn, Na15Sn4 and NaPb are formed by transporting Na ions into the anode alloy Sb-Sn-Pb. The calculated bond-lengths and melting points fit the observed ones well for these anode products. Owing to their complex structures with various atomic occupations in unit cell, the thermal property or electric property is not only relative to lattice electron, but also depends on the covalent electron. The sublattice plays an important role in the forming of the four anode products. The lattice electrons are supplied by Na at 4f sites in Na3Sb, Na at 16e and Sn at 32g sites in NaSn, Sn at 16c and Na at 48e sites in Na15Sn4, and Na at 16f and Pb at 32g sites in NaPb, respectively. The open-gate voltage is closely related to the lattice electrons and inversely proportional to the average number of lattice electrons per atom. The open-gate voltage of NaSb3 is the largest among the anode products, however, its averaged number of lattice electron per atom is the least. Since the lattice electron number of NaSn is the largest among the anode products, the open-gate voltage of NaSn is the least. It implies that the lattice electron plays a very important role in Na||Sb-Pb-Sn liquid metal battery, which can modulate the valence electron structures and thermal and electric properties.
      Corresponding author: Guo Yong-Quan, yqguo@ncepu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0905600)
    [1]

    Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Starkey J P 2003 Power. Eng. 17 30Google Scholar

    [3]

    Shen C, Wang H 2019 J. Phy: Conf. Ser. 1347 012087Google Scholar

    [4]

    邓浩, 张宁, 冯哲圣 2010 中国电子学会第十六届电子元件学术年会论文集 , 中国昆山 2010-09-13 第110页

    Deng H, Zhang N, Feng Z S 2010 Proceedings of the 16 th Annual Conference on Electronic Components of the Chinese Society of Electronics Kun Shan, China September 13, 2010 P110 (in Chinese)

    [5]

    Oshima T, Kajita M, Okuno A 2004 Int. J. Appl. Ceram. Technol. 1 269Google Scholar

    [6]

    蒋凯, 李浩秒, 李威, 陈时杰 2013 电力系统自动化 37 47Google Scholar

    Jiang K, Li H M, Li W, Chen S J 2013 Aut. Electr. Power Syst. 37 47Google Scholar

    [7]

    Agruss B 1963 J. Eleetrochem. Soc. 110 1097Google Scholar

    [8]

    Bradwell D J, Kim H, Sirk A H C, Sadoway D R 2012 J. Am. Chem. Soc. 134 1895Google Scholar

    [9]

    彭勃, 郭姣姣, 张坤, 王玉平 2017 电源技术 3 498Google Scholar

    Peng B, Guo J J, Zhang K, Wang Y P 2017 Chin. J. Power Sources 3 498Google Scholar

    [10]

    姜治安, 华一新, 杨建红, 颜恒维, 王成智 2017 电源技术 41 1213Google Scholar

    Jiang Z A, Hua X Y, Yang J H, Yan H W, Wang C Z 2017 Chin. J. Power Sources 41 1213Google Scholar

    [11]

    Xu J L, Kjos O S, Osen K S, Martinez A M, Kongstein O E, Haarberg G M 2016 J. Power Sources 332 274Google Scholar

    [12]

    Xu J L, Martinez A M, Osen K S, Kjos O S, Kongstein O E, Haarberg G M 2017 J. Electrochem. Soc. 164 A2335Google Scholar

    [13]

    陶宏伟 2014 硕士学位论文(武汉: 华中科技大学)

    Tao H 2014 M. S. Dissertation (Wuhan: HuaZhong University of Science and Technology) (in Chinese)

    [14]

    Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y, Zhao X 2020 ACS Appl. Energy. Mater. 3 5361Google Scholar

    [15]

    余澍 2017 博士学位论文(厦门: 厦门大学)

    Yu S 2017 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [16]

    李慧, 吴川, 吴锋, 白莹 2014 化学学报 1 21Google Scholar

    Li H, Wu C, Wu F, Bai Y 2014 Acta Chim. Sin. 1 21Google Scholar

    [17]

    宋刘斌, 黎安娴, 肖忠良 2019 化工学报 6 2051Google Scholar

    Song L B, Li A X, Xiao Z L 2019 J. Chem. Ind. Eng. 6 2051Google Scholar

    [18]

    徐宇虹, 尹鸽平, 左朋建 2008 化学进展 20 1827Google Scholar

    Xu H Y, Yi G P, Zuo J P 2008 Prog. Chem. 20 1827Google Scholar

    [19]

    侯贤华, 胡社军, 彭薇, 张志文, 汝强, 余洪文 2010 分子科学学报 26 400Google Scholar

    Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q, Yu H W 2010 J. Mol. Sci. 26 400Google Scholar

    [20]

    余瑞璜 1978 科学通报 4 217Google Scholar

    Yu R H 1978 Chin. Sci. Bull. 4 217Google Scholar

    [21]

    Guo Y Q, Yu R H, Zhang R L, Zhang X H, Tao K 1998 J. Phys. Chem. B 102 9Google Scholar

    [22]

    Li Z L, Xu H B, Gong S K 2004 J. Phys. Chem. B 108 15165Google Scholar

    [23]

    Wang T, Guo Y Q 2017 Chin. Phys. B 26 103101Google Scholar

    [24]

    Li L, Xing B S 2009 Mater. Chem. Phys. 117 276Google Scholar

    [25]

    Xue Z Q, Guo Y Q 2016 Chin. Phys. B 25 169Google Scholar

    [26]

    孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 10 107101Google Scholar

    Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 10 107101Google Scholar

    [27]

    吴文霞, 郭永权, 李安华, 李卫 2008 物理学报 57 2486Google Scholar

    Wu W X, Guo Y Q, Li A H, Li W 2008 Acta Phys. Sin. 57 2486Google Scholar

    [28]

    余瑞璜 1981 科学通报 4 206Google Scholar

    Yu R H 1981 Chin. Sci. Bull. 4 206Google Scholar

    [29]

    林成, 黄士星, 尹桂丽, 赵永庆 2016 兵器材料科学与工程 39 110

    Lin C, Huang S X, Yi J L, Zhao Y Q 2016 Ordnance Mater. Sci. Eng. 39 110

    [30]

    张建民 2000 陕西师范大学学报 3 47Google Scholar

    Zang J M 2000 Journal of Shanxi Normal University 3 47Google Scholar

    [31]

    孟振华, 郭永权 2012 科学通报 28 2693Google Scholar

    Meng Z H, Guo Y Q 2012 Chin. Sci. Bull. 28 2693Google Scholar

    [32]

    基泰尔 C著 (项金钟, 吴兴惠 译) 2011 固体物理导论 (北京: 化学工业出版社) 第38−39页

    Kittle C (translated by Xiang J Z, Wu X H) 2011 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp38−397 (in Chinese)

    [33]

    Li H M, Wang K L, Cheng S J, Jiang K 2016 ACS Appl. Mater. Inter. 8 12830Google Scholar

    [34]

    Ouchi T, Sadoway D R 2017 J. Power Sources. 357 158Google Scholar

    [35]

    梁基谢夫 著 (郭青蔚 译) 2008 金属二元系相图手册 (北京: 化学工业出版社) 第975−977页

    Liang Jishev (translated by Guo Q W) 2008 Metal Binary Phase Diagram Handbook (Beijing: Chemical Industry Press) pp975−977) (in Chinese)

  • 图 1  阴极Na1–xIAx合金的n电子数与熔点的关联图

    Figure 1.  Correlations between various electron numbers and melting points of Na1–xIAx cathode alloys.

    图 2  阴极Na1–xIAx合金的各种电子数与结合能的关联图

    Figure 2.  Correlations between various electrons and cohesive energy of Na1–xIAx cathode alloys.

    图 3  阴极Na1–xIAx合金的各种电子数与电势的关联图

    Figure 3.  Correlations of various electrons and electric potentials for Na1–xIAx anode alloys.

    表 1  Na1–xIAx合金键距计算

    Table 1.  Calculation of bond distances of Na1–xIAx alloy.

    Na1–xIAx$ {I}_{\alpha } $$ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å ${\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å$ {n}_{\rm{A}}$$ { I}_{\alpha } $$ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/${ \text{Å} }$${\bar{D} }_{\mathrm{uv} }\left({n}_{\alpha }\right)/{ \text{Å} }$$ {n}_{\alpha } $|∆D|/${\text{Å} }$
    Na83.72963.75020.0516064.30044.32100.008100.0206
    Na0.99K0.0183.73813.75380.0522064.31034.32600.008200.0157
    Na0.99Rb0.0183.74303.75720.0522064.31574.33000.008200.0143
    Na0.99Cs0.0183.74543.76280.0522064.31874.33610.008100.0175
    Na0.98K0.0283.74653.75740.0529064.32024.33100.008230.0108
    Na0.98Rb0.0283.75643.76430.0529064.33104.33890.008200.0079
    Na0.98Cs0.0283.76113.77550.0529064.33704.35130.008170.0143
    Na0.97K0.0383.75503.76100.0534864.33014.33610.008290.0060
    Na0.97Rb0.0383.76973.77130.0535164.34634.34790.008250.0016
    Na0.97Cs0.0383.77693.78810.0535464.35524.36650.008210.0113
    Na0.96K0.0483.76353.76470.0541164.33994.34110.008340.0012
    Na0.96Rb0.0483.78313.77850.0541564.36164.35700.008290.0047
    Na0.96Cs0.0483.79263.80090.0541964.37354.38180.008240.0082
    Na0.95K0.0583.77193.76840.0547464.34984.34630.008400.0036
    Na0.95Rb0.0583.79653.78560.0547964.37694.36610.008340.0109
    Na0.95Cs0.0583.80843.81360.0548464.39184.39710.008270.0052
    DownLoad: CSV

    表 2  Na阴极合金的价电子结构

    Table 2.  Valence electron structures of cathode Na based alloy.

    Na1–xIAxncnsnpnlR(1)
    Na0.46140.46060.00080.53861.4181
    Na0.99K0.010.46680.46600.00080.53321.4217
    Na0.98K0.020.47220.47130.00080.52781.4254
    Na0.97K0.030.47760.47670.00090.52241.4290
    Na0.96K0.040.48300.48210.00090.51701.4327
    Na0.95K0.050.48840.48750.00090.51161.4363
    Na0.99Rb0.010.46680.46600.00080.53321.4235
    Na0.98Rb0.020.47220.47130.00080.52781.4289
    Na0.97Rb0.030.47760.47670.00090.52241.4343
    Na0.96Rb0.040.48300.48210.00090.51701.4397
    Na0.95Rb0.050.48840.48750.00090.51161.4451
    Na0.99Cs0.010.46680.46600.00080.53321.4263
    Na0.98Cs0.020.47220.47130.00080.52781.4345
    Na0.97Cs0.030.47760.47670.00090.52241.4428
    Na0.96Cs0.040.48300.48210.00090.51701.4510
    Na0.95Cs0.050.48840.48750.00090.51161.4592
    DownLoad: CSV

    表 3  阴极Na1–xIAx合金的熔点、结合能与电势

    Table 3.  Melting point, cohesive energy, and electric potentials of cathode Na1–xIAx alloy.

    掺杂量x原子杂阶掺杂杂阶$ \bar{T}_{\rm{m}} $/K$ {E}_{\mathrm{c}} $/(eV·atom–1)$ {\bar{E}}_{\mathrm{c}} $/(eV·atom–1)$\left| { {\Delta E}_{\mathrm{c} } }/{ {E}_{\mathrm{c} } }\right|/{\%}$电势/V
    0Na3336.761.1131.1654.670.1482
    0.01Na2K4336.641.1111.1644.770.1481
    0.01Na2Rb4336.451.1101.1634.770.1480
    0.01Na2Cs4336.021.1031.1615.260.1478
    0.02Na2K4336.641.1091.1634.390.1481
    0.02Na2Rb4336.141.1081.1614.780.1478
    0.02Na2Cs4335.291.1101.1584.320.1475
    0.03Na2K4336.601.1031.1625.350.1480
    0.03Na2Rb4335.851.1091.1594.510.1476
    0.03Na2Cs4334.581.1081.1544.150.1471
    0.04Na2K4336.571.1071.1624.970.1479
    0.04Na2Rb4335.571.1031.1574.900.1474
    0.04Na2Cs4333.881.1091.1513.790.1467
    0.05Na2K4336.551.1081.1614.780.1478
    0.05Na2Rb4335.301.1071.1564.430.1472
    0.05Na2Cs4333.201.1081.1473.520.1463
    DownLoad: CSV

    表 4  正极合金的晶体结构

    Table 4.  Crystal structures of anode alloys.

    合金空间群a/$\text{Å}$b/$\text{Å}$c/$\text{Å}$原子占位xyz
    Sb2c0.33330.66660.2500
    Na3SbP63mmc (194)5.3555.3559.496Na12b000.2500
    Na24f0.33330.66660.5830
    NaSnI41/acd (142)10.46010.46017.390Sn32g0.06960.12600.9362
    Na116f0.62580.87580.1250
    Na216e0.872400.2500
    Sn16c0.20830.20830.2083
    Na15Sn4I43d (220)13.14013.14013.140Na112a0.375000.2500
    Na248e0.12700.15480.9670
    Pb32g0.06960.11860.9383
    NaPbI41/acd (142)10.58010.58017.746Na116e0.25000.12500.5000
    Na216f0.12500.37500.6250
    DownLoad: CSV

    表 5  阳极合金的键距

    Table 5.  Bond distances of the anode alloy.

    合金键序成键原子$ {I}_{\alpha } $$ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/$\text{Å}$$ {\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right)/$$\text{Å}$$ {n}_{\alpha } $|ΔD|/$\text{Å}$
    Na3Sb1Sb-Na263.09753.09100.390550.0065
    2Sb-Na143.16853.16200.194160.0065
    3Na1-Na243.17803.17150.180300.0065
    4Na1-Na163.47693.47040.037380.0065
    5Sb-Na1123.48133.47480.058460.0065
    6Na2-Na1123.48133.47480.056300.0065
    7Na2-Na1124.43104.42450.001470.0065
    8Na2-Na224.75754.75100.000640.0065
    NaSn1Sn-Sn22.97483.02010.426500.0453
    2Sn-Sn42.99253.03780.398490.0453
    3Na1-Sn43.33553.38080.075060.0453
    4Na1-Sn43.35923.40450.068540.0453
    5Na2-Sn43.39743.44270.130640.0453
    6Na2-Sn43.42313.46840.118370.0453
    7Na1-Sn43.48703.53230.041970.0453
    8Na2-Sn23.52253.56780.080830.0453
    9Na2-Sn43.54823.59350.073240.0453
    10Na1-Na243.61483.66010.039850.0453
    11Na1-Na243.66583.71110.032770.0453
    12Na1-Na113.72183.76710.011970.0453
    13Sn-Sn23.74063.78590.022570.0453
    14Sn-Sn24.37804.42330.001960.0453
    15Na1-Na244.49194.53720.001380.0453
    16Na1-Sn44.66744.71270.000450.0453
    17Na2-Na214.70954.75480.001320.0453
    Na15Sn41Sn-Na2243.23783.28540.208500.0476
    2Na2-Na2243.26243.31000.194990.0476
    3Na1-Na2243.34253.39010.110170.0476
    4Na2-Na2123.34683.39440.148300.0476
    5Sn-Na2243.40493.45250.121270.0476
    6Sn-Na2243.41893.46650.115890.0476
    7Na1-Na2243.50263.55020.065550.0476
    8Sn-Na1243.54823.59580.055820.0476
    9Na2-Na2243.81383.86140.032610.047
    10Na2-Na2243.97944.02700.019060.0476
    11Na2-Na2124.17124.21880.010230.0476
    NaPb1Pb-Pb23.14643.14520.334770.0013
    2Pb-Pb43.16183.16060.315560.0013
    3Pb-Na243.36533.36410.198950.0013
    4Pb-Na143.38883.38760.082370.0013
    5Pb-Na243.42153.42030.160350.0013
    6Pb-Na243.48473.48350.125820.0013
    7Pb-Na143.49293.49170.055240.0013
    8Pb-Na143.55493.55370.043540.0013
    9Pb-Na143.61723.61600.034280.0013
    10Pb-Pb23.64183.64060.050010.0013
    11Na1-Na283.69673.69550.034790.0013
    12Na2-Na213.74063.73940.064880.0013
    13Pb-Pb24.40084.39960.002720.0013
    14Na1-Na244.54554.54430.001340.0013
    15Pb-Na244.75134.75010.000970.0013
    DownLoad: CSV

    表 6  阳极产物的价电子结构

    Table 6.  Valence electron structures of anode products

    合金原子杂阶ncnsnpnlR(1)
    Na3SbSb23.00000.56942.430601.4279
    Na141.00000.99820.001801.3070
    Na220.46140.46060.00080.53861.4181
    NaSnSn12.000002.00002.00001.3990
    Na111.00000.99820.001801.3070
    Na240001.00001.5133
    Na15Sn4Sn43.66380.83192.83190.33621.3990
    Na141.00000.99820.001801.3070
    Na230.53500.53400.00100.46501.4029
    NaPbPb22.09620.04812.04811.90381.4300
    Na141.00000.99820.001801.3070
    Na210001.00001.5133
    DownLoad: CSV

    表 7  正极合金的熔点、结合能与电势

    Table 7.  Melting point, cohesive energy, and electric potentials of anode alloy.

    合金Tm/K [35]$ \bar{T}_{\rm{m}} $/K|${\Delta {T}_{\mathrm{m} } }/{ {T}_{\mathrm{m} } }$|/%电势/VnβEc/(eV·atom–1)
    Na3Sb11291142.961.21.152040.601.766
    NaSn851813.164.40.734350.602.103
    Na15Sn4681746.169.60.907430.711.318
    NaPb645630.682.20.826360.601.559
    DownLoad: CSV

    表 8  电池的开路电压

    Table 8.  Open gate voltages of the battery.

    Na1–xIAx开路电压/V
    Na3SbNaSnNa15Sn4NaPb
    Na1.00380.58610.75920.6781
    Na0.09K0.011.00390.58620.75930.6782
    Na0.98K0.021.00390.58620.75930.6782
    Na0.97K0.031.00400.58630.75940.6783
    Na0.96K0.041.00410.58640.75950.6784
    Na0.95K0.051.00420.58650.75960.6785
    Na0.99Rb0.011.00400.58630.75940.6783
    Na0.98Rb0.021.00420.58650.75960.6785
    Na0.97Rb0.031.00440.58670.75980.6787
    Na0.96Rb0.041.00460.58690.76000.6789
    Na0.95Rb0.051.00480.58710.76020.6791
    Na0.99Cs0.011.00420.58650.75960.6785
    Na0.98Cs0.021.00450.58680.75990.6788
    Na0.97Cs0.031.00490.58720.76030.6792
    Na0.96Cs0.041.00530.58760.76070.6796
    Na0.95Cs0.051.00570.58800.76110.6800
    nl/atom0.26931.25000.36451.0682
    DownLoad: CSV

    表 A1  IA族元素的乙种杂化表

    Table A1.  B type hybrid table of IA group

    σ1234
    Chσ10.53860.46500
    Ctσ00.46160.53501
    nTσ1111
    nlσ10.53860.46500
    ncσ00.46160.53501
    Rσ(1)H0.37080.32890.32220.2800
    Li1.32601.20891.14400.9860
    Na1.51331.45511.43081.3070
    K1.96281.87941.86011.7820
    Rb2.08702.02702.01751.9570
    Cs2.21402.22602.22792.2400
    注: $ l, \; m, \;n, \; \tau $: 1 0 0 0
      $l{'}, \; m{'}, \;n{'}, \; \tau {'}$: 0.9982 0.0018 0 0
    DownLoad: CSV

    表 A2  VA族元素的甲种杂化表

    Table A2.  A type hybrid table of VA group

    σ1234
    Chσ10.56940.19830
    Ctσ00.43060.80171
    nTσ3 or 53 or 53 or 53 or 5
    nlσ0000
    ncσ3 or 53 or 53 or 53 or 5
    Rσ (1)N0.70000.75170.79730.8200
    P1.09801.11731.13431.1428
    As1.18001.23901.29111.3170
    Sb1.35601.42791.49191.5230
    Bi1.39901.44551.50441.5290
    注: $ l, \; m, \; n, \; \tau $: 1 2 0 1; $ l{'}, \; m{'}, \; n{'}, \; \tau {'} $: 0 3 0 1
    DownLoad: CSV

    表 A3  IVA族元素的甲种杂化表

    Table A3.  A type hybrid table of IVA group

    σ123456
    Chσ10.95020.83200.16810.04810
    Ctσ00.04980.16800.83190.95191
    nTσ444444
    nlσ21.90401.66400.33600.09600
    ncσ22.09602.33603.66403.90404
    Rσ(1)C0.76300.76300.76300.76300.76300.7630
    Si1.17001.17001.17001.17001.17001.1700
    Ge1.22301.22301.22301.22301.22301.2230
    Sn1.39901.39901.39901.39901.39901.3990
    Pb1.43001.43001.43001.43001.43001.4300
    注: $ l, \; m, \; n, \; \tau $; 2 2 0 0; $ l{'}, \; m{'}, \; n{'}, \; \tau {'}; $ 1 3 0 1
    DownLoad: CSV
  • [1]

    Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Starkey J P 2003 Power. Eng. 17 30Google Scholar

    [3]

    Shen C, Wang H 2019 J. Phy: Conf. Ser. 1347 012087Google Scholar

    [4]

    邓浩, 张宁, 冯哲圣 2010 中国电子学会第十六届电子元件学术年会论文集 , 中国昆山 2010-09-13 第110页

    Deng H, Zhang N, Feng Z S 2010 Proceedings of the 16 th Annual Conference on Electronic Components of the Chinese Society of Electronics Kun Shan, China September 13, 2010 P110 (in Chinese)

    [5]

    Oshima T, Kajita M, Okuno A 2004 Int. J. Appl. Ceram. Technol. 1 269Google Scholar

    [6]

    蒋凯, 李浩秒, 李威, 陈时杰 2013 电力系统自动化 37 47Google Scholar

    Jiang K, Li H M, Li W, Chen S J 2013 Aut. Electr. Power Syst. 37 47Google Scholar

    [7]

    Agruss B 1963 J. Eleetrochem. Soc. 110 1097Google Scholar

    [8]

    Bradwell D J, Kim H, Sirk A H C, Sadoway D R 2012 J. Am. Chem. Soc. 134 1895Google Scholar

    [9]

    彭勃, 郭姣姣, 张坤, 王玉平 2017 电源技术 3 498Google Scholar

    Peng B, Guo J J, Zhang K, Wang Y P 2017 Chin. J. Power Sources 3 498Google Scholar

    [10]

    姜治安, 华一新, 杨建红, 颜恒维, 王成智 2017 电源技术 41 1213Google Scholar

    Jiang Z A, Hua X Y, Yang J H, Yan H W, Wang C Z 2017 Chin. J. Power Sources 41 1213Google Scholar

    [11]

    Xu J L, Kjos O S, Osen K S, Martinez A M, Kongstein O E, Haarberg G M 2016 J. Power Sources 332 274Google Scholar

    [12]

    Xu J L, Martinez A M, Osen K S, Kjos O S, Kongstein O E, Haarberg G M 2017 J. Electrochem. Soc. 164 A2335Google Scholar

    [13]

    陶宏伟 2014 硕士学位论文(武汉: 华中科技大学)

    Tao H 2014 M. S. Dissertation (Wuhan: HuaZhong University of Science and Technology) (in Chinese)

    [14]

    Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y, Zhao X 2020 ACS Appl. Energy. Mater. 3 5361Google Scholar

    [15]

    余澍 2017 博士学位论文(厦门: 厦门大学)

    Yu S 2017 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [16]

    李慧, 吴川, 吴锋, 白莹 2014 化学学报 1 21Google Scholar

    Li H, Wu C, Wu F, Bai Y 2014 Acta Chim. Sin. 1 21Google Scholar

    [17]

    宋刘斌, 黎安娴, 肖忠良 2019 化工学报 6 2051Google Scholar

    Song L B, Li A X, Xiao Z L 2019 J. Chem. Ind. Eng. 6 2051Google Scholar

    [18]

    徐宇虹, 尹鸽平, 左朋建 2008 化学进展 20 1827Google Scholar

    Xu H Y, Yi G P, Zuo J P 2008 Prog. Chem. 20 1827Google Scholar

    [19]

    侯贤华, 胡社军, 彭薇, 张志文, 汝强, 余洪文 2010 分子科学学报 26 400Google Scholar

    Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q, Yu H W 2010 J. Mol. Sci. 26 400Google Scholar

    [20]

    余瑞璜 1978 科学通报 4 217Google Scholar

    Yu R H 1978 Chin. Sci. Bull. 4 217Google Scholar

    [21]

    Guo Y Q, Yu R H, Zhang R L, Zhang X H, Tao K 1998 J. Phys. Chem. B 102 9Google Scholar

    [22]

    Li Z L, Xu H B, Gong S K 2004 J. Phys. Chem. B 108 15165Google Scholar

    [23]

    Wang T, Guo Y Q 2017 Chin. Phys. B 26 103101Google Scholar

    [24]

    Li L, Xing B S 2009 Mater. Chem. Phys. 117 276Google Scholar

    [25]

    Xue Z Q, Guo Y Q 2016 Chin. Phys. B 25 169Google Scholar

    [26]

    孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 10 107101Google Scholar

    Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 10 107101Google Scholar

    [27]

    吴文霞, 郭永权, 李安华, 李卫 2008 物理学报 57 2486Google Scholar

    Wu W X, Guo Y Q, Li A H, Li W 2008 Acta Phys. Sin. 57 2486Google Scholar

    [28]

    余瑞璜 1981 科学通报 4 206Google Scholar

    Yu R H 1981 Chin. Sci. Bull. 4 206Google Scholar

    [29]

    林成, 黄士星, 尹桂丽, 赵永庆 2016 兵器材料科学与工程 39 110

    Lin C, Huang S X, Yi J L, Zhao Y Q 2016 Ordnance Mater. Sci. Eng. 39 110

    [30]

    张建民 2000 陕西师范大学学报 3 47Google Scholar

    Zang J M 2000 Journal of Shanxi Normal University 3 47Google Scholar

    [31]

    孟振华, 郭永权 2012 科学通报 28 2693Google Scholar

    Meng Z H, Guo Y Q 2012 Chin. Sci. Bull. 28 2693Google Scholar

    [32]

    基泰尔 C著 (项金钟, 吴兴惠 译) 2011 固体物理导论 (北京: 化学工业出版社) 第38−39页

    Kittle C (translated by Xiang J Z, Wu X H) 2011 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp38−397 (in Chinese)

    [33]

    Li H M, Wang K L, Cheng S J, Jiang K 2016 ACS Appl. Mater. Inter. 8 12830Google Scholar

    [34]

    Ouchi T, Sadoway D R 2017 J. Power Sources. 357 158Google Scholar

    [35]

    梁基谢夫 著 (郭青蔚 译) 2008 金属二元系相图手册 (北京: 化学工业出版社) 第975−977页

    Liang Jishev (translated by Guo Q W) 2008 Metal Binary Phase Diagram Handbook (Beijing: Chemical Industry Press) pp975−977) (in Chinese)

  • [1] Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He. Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell. Acta Physica Sinica, 2023, 72(10): 107702. doi: 10.7498/aps.72.20230100
    [2] Tang Gui-De, Li Zhuang-Zhi, Ma Li, Wu Guang-Heng, Hu Feng-Xia. Opportunity and challenge for study of valence electron structure in typical magnetic materials. Acta Physica Sinica, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [3] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang. Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [4] Qi Wei-Hua, Ma Li, Li Zhuang-Zhi, Tang Gui-De, Wu Guang-Heng. Dependences of valence electronic structure on magnetic moment and electrical resistivity of metals. Acta Physica Sinica, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [5] Liu Fang-Fang, He Qing, Zhou Zhi-Qiang, Sun Yun. Effects of Cu elements on Cu(In,Ga)Se2 film and solar cell. Acta Physica Sinica, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [6] Wang Yun-Fei, Li Yun-Kai, Sun Chuan, Zhu Ling-Bo, Miao Yong, Chen Xue-Bing. Electronic theoretical model of static and dynamic strength of steels. Acta Physica Sinica, 2014, 63(12): 126101. doi: 10.7498/aps.63.126101
    [7] Liu Bo-Fei, Bai Li-Sha, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Modification to the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(20): 208801. doi: 10.7498/aps.62.208801
    [8] Meng Zhen-Hua, Li Jun-Bin, Guo Yong-Quan, Wang Yi. Correlations between the valence electron structure and melt pointing and cohesive energies of rare earth metals. Acta Physica Sinica, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [9] Xiao Wen-Bo, He Xing-Dao, Gao Yi-Qing. Experimental investigation on open-circuit voltage of InGaP/InGaAs/Ge triple-junction solar cell influenced by the vibration direction of the electric vector of linearly polarized light. Acta Physica Sinica, 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [10] Wang Xin-Hua, Zhao Miao, Liu Xin-Yu, Pu Yan, Zheng Ying-Kui, Wei Ke. The experiential fit of the capacitance-voltage characteristicsof the AlGaN/AlN/GaN high electron mobility transistors. Acta Physica Sinica, 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [11] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [12] Hu Kun-Ming. The equal probability comparison method of determining the equivalent-electron Young basis. Acta Physica Sinica, 2008, 57(10): 6074-6080. doi: 10.7498/aps.57.6074
    [13] Wu Wen-Xia, Guo Yong-Quan, Li An-Hua, Li Wei. Analysis of valence electron structures and calculation of magnetic properties of Nd2Fe14B. Acta Physica Sinica, 2008, 57(4): 2486-2492. doi: 10.7498/aps.57.2486
    [14] Hu Kun-Ming. Discussion on the transformation property between the configuration wavefunction of the equivalent-electron and the Young tableau. Acta Physica Sinica, 2005, 54(10): 4524-4525. doi: 10.7498/aps.54.4524
    [15] Lu Yun-Hao, Duan Xiao-Bang, Lü Ping, Zhang Han-Jie, Li Hai-Yang, Bao Shi-Ning, He Pi-Mo. UPS study of tri(β-naphthyl) phosphine overlayer on Ag(110). Acta Physica Sinica, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [16] Lv Bin, Lv Ping, Shi Shen-Lei, Zhang Jian-Hua, Tang Jian-Xin, Lou Hui, He Pi-Mo, Bao Shi-Ning. . Acta Physica Sinica, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [17] XU ZHI-ZHONG. THE VALENCE BAND STRUCTURES AND OPTICAL PROPERTIES OF STRAINED GaAs LAYERS GROWN ON THE GexSi1-x(001) SUBSTRATES. Acta Physica Sinica, 1996, 45(1): 126-132. doi: 10.7498/aps.45.126
    [18] LIU RANG-SU, LI JI-YONG. . Acta Physica Sinica, 1995, 44(10): 1582-1587. doi: 10.7498/aps.44.1582
    [19] CHEN KUI-YING, LI QING-CHUN, CHEN XI-CHEN. STRUCTURES AND MICRODYNAMIC BEHAVIOR OF LIQUID TRANSITION METAL Pd AND Pt. Acta Physica Sinica, 1993, 42(2): 283-289. doi: 10.7498/aps.42.283
    [20] CHEN KUI-YING, LI QING-CHUN. LOCAL STRUCTURE AND BOND ORIENTATION ORDER OF LIQUID NOBLE METAL Au AND Ag. Acta Physica Sinica, 1992, 41(11): 1813-1819. doi: 10.7498/aps.41.1813
Metrics
  • Abstract views:  6722
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2020
  • Accepted Date:  01 December 2020
  • Available Online:  02 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回