Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and thermal properties of periodic split-flow microchannels

Wang Han Yuan Li Wang Chao Wang Ru-Zhi

Citation:

Structure and thermal properties of periodic split-flow microchannels

Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi
PDF
HTML
Get Citation
  • Microchannel heat sinks have important applications in integrated circuits, but the current traditional long straight microchannel heat dissipation process causes uneven temperature and low heat dissipation efficiency. In this paper, a periodic split-flow microstructure is designed and integrated with traditional microchannels to form a periodic split-flow microchannel heat sink. Numerical simulation is used to study the influence of the number, the arrangement and structural parameters of microstructures in a single microchannel on its thermal performance. The simulation results show that the split-flow microstructure can increase the heat exchange area, break the original laminar boundary layer, promote the mixing of cold/hot coolant, and significantly improve the heat dissipation performance of the microchannel. Through comparative experiments, 9 groups are finally determined as the optimal number of microstructures in a single microchannel. At a heat flux of 100 W/cm2, when the coolant flow rate at the inlet is 1.18 m/s, after 9 groups of microstructures are added into a single microchannel, the maximum temperature drops by about 24 K and the thermal resistance decreases by about 44%. The Nusselt number is increased by about 124%, and the performance evaluation criterion (PEC) reaches 1.465. On this basis, the microstructure adopts a staggered gradual periodic arrangement to avoid the long-distance non-microstructure section between the two groups of microstructures. The turbulence element that gradually widens along the flow direction makes the coolant fully utilized. This results in a reduction in the high/low temperature zone and alleviates the temperature gradient that exists along the flow direction of the heat dissipation surface, and the pressure drop loss is also reduced to a certain extent compared with the pressure drop in the uniform arrangement, and the comprehensive thermal performance is further improved. It shows broad application prospects in the field of high-power integrated circuits and electronic cooling.
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129) and the Beijing Municipal High Level Innovative Team Building Program, China (Grant No. IDHT20170502)
    [1]

    刘益才 2006 电子器件 29 296Google Scholar

    Liu Y C 2006 Chin. J. Electron. 29 296Google Scholar

    [2]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [3]

    Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821Google Scholar

    [4]

    Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263Google Scholar

    [7]

    Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744Google Scholar

    [8]

    刘一兵 2007 电子工艺技术 28 286Google Scholar

    Liu Y B 2007 Electron. Process Technol. 28 286Google Scholar

    [9]

    Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126Google Scholar

    [10]

    裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85

    [11]

    裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339

    [12]

    Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377Google Scholar

    [13]

    Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796Google Scholar

    [14]

    Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359Google Scholar

    [15]

    Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374Google Scholar

    [16]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701Google Scholar

    [17]

    Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708Google Scholar

    [18]

    董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618Google Scholar

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618Google Scholar

    [19]

    Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587Google Scholar

    [20]

    Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259Google Scholar

    [21]

    Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609Google Scholar

    [22]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247

    [23]

    Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208Google Scholar

    [24]

    Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428Google Scholar

    [25]

    Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78Google Scholar

    [26]

    Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049Google Scholar

    [27]

    Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487Google Scholar

    [28]

    Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948Google Scholar

    [29]

    Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348Google Scholar

    [30]

    Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060Google Scholar

    [31]

    Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49Google Scholar

    [32]

    Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930Google Scholar

    [33]

    Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060Google Scholar

    [34]

    Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706Google Scholar

  • 图 1  长直微通道散热器结构示意图 (a)长直微通道散热器; (b)单根微通道截面

    Figure 1.  Schematic diagram of the long straight microchannel heat sink: (a) Long straight microchannel heat sink; (b) cross section of a single microchannel

    图 2  分流微通道结构示意图 (a)分流微通道散热器; (b)分流微结构局部俯视图

    Figure 2.  Schematic diagram of the split-flow microchannel structure: (a) Split-flow microchannel heat sink; (b) Partial top view of the split-flow microstructure

    图 3  含有不同数量及排布方式微结构的单/双根微通道示意图: SM1 (0组); SM2 (3组); SM3 (9组); SM4 (15组); DM1 (交错排布); DM2 (渐密排布); DM3 (渐变排布); DM4(交错渐变排布)

    Figure 3.  Schematic diagram of single/double microchannels with different numbers and arrangements of microstructures: SM1 (0 group); SM2 (3 groups); SM3 (9 groups); SM4 (15 groups); DM1 (staggered arrangement); DM2 (gradually arranged); DM3 (gradient arrangement); DM4 (staggered gradient arrangement)

    图 4  (a) SM1—SM4微通道内主流线方向流体的压力变化; (b) SM3及DM1—DM4在不同入口端流速下的压降损失

    Figure 4.  (a)Pressure change of the fluid in the direction of the main flow line in the SM1–SM4 microchannel; (b) the pressure drop loss of SM3 and DM1–DM4 at different inlet flow rates.

    图 5  SM2中微结构附近局部流体的压力变化切面云图

    Figure 5.  Cross-sectional cloud diagram of pressure change of local fluid near the microstructure in SM2

    图 6  整体热阻与泵送功率的关系 (a) SM1—SM4; (b) SM3, DM1—DM4

    Figure 6.  Relationship between overall thermal resistance and pumping power: (a) SM1–SM4; (b) SM3, DM1–DM4

    图 7  流体在SM2微通道内不同位置的流速分布

    Figure 7.  Flow velocity distribution of fluid at different positions in the SM2 microchannel

    图 8  不同位置流速切面图

    Figure 8.  Cross-sectional view of flow velocity at different locations

    图 9  微通道底面最高温度与入口端流速的关系 (a) SM1—SM4; (b) SM3及DM1—DM4

    Figure 9.  Relationship between the maximum temperature on the bottom of the microchannel and the flow rate at the inlet: (a) SM1–SM4; (b) SM3 and DM1–DM4

    图 10  不同情况下底面上沿主流动方向上温度变化 (a) SM1—SM4; (b) SM3及DM1—DM4

    Figure 10.  Temperature changes along the main flow direction on the bottom surface under different conditions: (a) SM1–SM4; (b) SM3 and DM1–DM4.

    图 11  不同情况下换热面温度分布云图

    Figure 11.  Cloud diagram of temperature distribution of heat exchange surface under different conditions.

    图 12  微通道散热器整体热阻与入口雷诺数的关系

    Figure 12.  The relationship between the overall thermal resistance of the microchannel radiator and the entrance Reynolds number.

    图 13  (a)不同情况下努塞尔数与入口端雷诺数的关系; (b)不同情况PEC与入口雷诺数的关系

    Figure 13.  (a) The relationship between Nusselt number and inlet Reynolds number under different conditions; (b) the relationship between performance evaluation criterion and inlet Reynolds number under different conditions.

    表 1  不同温度下水的物理参数

    Table 1.  Physical parameters of water at different temperatures

    温度
    T/K
    密度 ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数 κ/
    (W·m–1·K–1)
    动态黏度 μ/
    (10–4 Pa·s)
    293.15998.24186.90.5942310.093
    303.15995.624179.70.610557.96
    313.15992.24176.50.625166.51
    323.15988.054176.80.63815.47
    333.15983.224180.20.649424.70
    343.15977.784186.30.659164.10
    353.15971.784194.80.667383.59
    363.15965.34205.40.674133.17
    373.15958.394218.20.679442.82
    383.15958.3942330.683372.53
    DownLoad: CSV

    表 2  硅的物理参数

    Table 2.  Physical parameters of silicon.

    材料
    物性
    密度ρ/
    (kg·m–3)
    恒压热容 cp/
    (J·kg–1·K–1)
    导热系数k/
    (W·m–1·K–1)
    2329700130
    DownLoad: CSV

    表 3  网格独立性研究

    Table 3.  Grid independence research

    网格1893083网格21128905网格31414841网格41702482网格51916125网格63475672
    压降损失($ \Delta P $)4195.04287.04341.24379.94409.64406.1
    最高温度(Tm)353.05352.65352.32351.94351.88351.87
    误差4.8%; 0.33%2.7%; 0.22%1.47%; 0.13%0.59%; 0.020%0.079%; 0.0028%基准
    DownLoad: CSV
  • [1]

    刘益才 2006 电子器件 29 296Google Scholar

    Liu Y C 2006 Chin. J. Electron. 29 296Google Scholar

    [2]

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M 2020 Nat. Photonics 14 37Google Scholar

    [3]

    Murshed S M S, Castro C A N D 2017 Renewable Sustainable Energy Rev. 78 821Google Scholar

    [4]

    Zhang Z W, Ouyang Y, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [5]

    Xu X F, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [6]

    Ma Y L, Zhang Z W, Chen J G, Kimmo S, Sebastian V, Chen J 2018 Carbon 135 263Google Scholar

    [7]

    Dmitry A, Chen J, Walther J H, Giapis K P, Panagiotis A, Petros K 2015 Nano Lett. 15 5744Google Scholar

    [8]

    刘一兵 2007 电子工艺技术 28 286Google Scholar

    Liu Y B 2007 Electron. Process Technol. 28 286Google Scholar

    [9]

    Tuckerman D B, Pease R F W 1981 IEEE Electron Device Lett. 2 126Google Scholar

    [10]

    裘腾威, 刘敏, 刘源, 张祎, 金涨军 2020 低温与超导 48 85

    Qiu T W, Liu M, Liu Y, Zhang W, Jin Z J J 2020 Cryog. Supercond. 48 85

    [11]

    裘腾威, 刘敏, 刘源, 张祎, 张威 2020 热科学与技术 19 339

    Qiu T W, Liu M, Liu Y, Zhang W, Zhang W 2020 J. Therm. Sci. Tech. 19 339

    [12]

    Qi Z, Zheng Y, Zhu X, Wei J, Liu J, Chen L, Li C 2020 Vacuum 177 109377Google Scholar

    [13]

    Khan M Z U, Uddin E, Akbar B, Akram N, Naqvi A A, Sajid M, Ali Z, Younis M Y, Garcia Marquez F P 2020 Nanomaterials 10 1796Google Scholar

    [14]

    Bahiraei M, Monavari A, Naseri M, Moayedi H 2020 Int. J. Heat Mass Transfer 151 119359Google Scholar

    [15]

    Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, Lorenzini-Gutierrez D, Gonzalez-Valle C U 2016 Appl. Therm. Eng. 95 374Google Scholar

    [16]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta. Phys. Sin. 68 054701Google Scholar

    [17]

    Ghaedamini H, Salimpour M R, Mujumdar A S 2011 Appl. Therm. Eng. 31 708Google Scholar

    [18]

    董涛, 陈运生, 杨朝初, 毕勤成, 吴会龙, 郑国平 2005 化工学报 56 1618Google Scholar

    Dong T, Chen Y S, Yang C C, Bi Q C, Wu H L, Zheng G P 2005 J. Chem. Eng. Data. 56 1618Google Scholar

    [19]

    Abo-Zahhad E M, Ookawara S, Radwan A, Elkady M F, El-Shazly A H 2020 Case Stud. Therm. Eng. 18 100587Google Scholar

    [20]

    Wang W, Li Y, Zhang Y, Li B, Sundén B 2019 J. Therm. Anal. Calorim. 140 1259Google Scholar

    [21]

    Bhandari P, Prajapati Y K 2021 Int. J. Therm. Sci. 159 106609Google Scholar

    [22]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 247

    [23]

    Xia G D, Chai L, Wang H Y, Zhou M Z, Cui Z Z 2010 Appl. Therm. Eng. 31 1208Google Scholar

    [24]

    Wang R J, Wang J W, Lijin B Q, Zhu Z F 2018 Appl. Therm. Eng. 133 428Google Scholar

    [25]

    Jia Y T, Xia G D, Li Y F, Ma D D, Cai B 2018 Int. Commun. Heat Mass Transfer 92 78Google Scholar

    [26]

    Xie H, Yang B, Zhang S, Song M 2020 Int. J. Energy. Res. 44 3049Google Scholar

    [27]

    Shen H, Wang C C, Xie G 2018 Int. J. Heat Mass Transfer 117 487Google Scholar

    [28]

    Xie G, Shen H, Wang C C 2015 Int. J. Heat Mass Transfer 90 948Google Scholar

    [29]

    Li Y, Wang Z, Yang J, Liu H 2020 Appl. Therm. Eng. 175 115348Google Scholar

    [30]

    Li P, Guo D, Huang X 2020 Appl. Therm. Eng. 171 115060Google Scholar

    [31]

    Mehta S K, Pati S 2019 J. Therm. Anal. Calorim. 136 49Google Scholar

    [32]

    Zhang C P, Lian Y F, Yu X F, Liu W, Teng J T, Xu T T, Hsu C H, Chang Y J, Greif R 2013 Int. J. Heat Mass Transfer 66 930Google Scholar

    [33]

    Lee P S, Garimella S V 2006 Int. J. Heat Mass Transfer 49 3060Google Scholar

    [34]

    Wang W, Zhang Y, Lee K S, Li B 2019 Int. J. Heat Mass Transfer 135 706Google Scholar

  • [1] Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran. Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential. Acta Physica Sinica, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [2] Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun. Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel. Acta Physica Sinica, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [3] Cao Chun-Lei, Xu Jin-Liang, Ye Wen-Li. Self-propulsion droplet induced via periodic explosive boiling. Acta Physica Sinica, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [4] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [5] He Rui-Xia, Liu Bo-Fei, Liang Jun-Hui, Gao Hai-Bo, Wang Ning, Zhang Qi-Xing, Zhang De-Kun, Wei Chang-Chun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Sauna-like process prepared periodic molybdenum metal catalytic electrodes and their applications in water reduction. Acta Physica Sinica, 2016, 65(4): 048801. doi: 10.7498/aps.65.048801
    [6] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [7] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [8] Gong Jian-Qiang, Liang Chang-Hong. An accurate macro-cell-method for extracting dispersion characteristics of 1D reciprocal microwave structures with finite periodicity. Acta Physica Sinica, 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [9] Yu Miao, Gao Jin-Song, Zhang Jian, Xu Nian-Xi. Suppression of the stray light of 2-dimensional gratings combined with an array of periodic slit. Acta Physica Sinica, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [10] Yan Han, Zhang Wen-Ming, Hu Kai-Ming, Liu Yan, Meng Guang. Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physica Sinica, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [11] Chen Xiao-Jun, Zhang Zi-Li, Ge Hui-Liang. Fabricating three-dimensional periodic micro-structure with planar defects via a single exposure. Acta Physica Sinica, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [12] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] Zhang Yun. Periodically poled lithium niobate investigated by micro-Raman spectroscopy and luminescence. Acta Physica Sinica, 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [14] Zhong Lan-Hua, Wu Fu-Gen. Propagation of water wave over a periodically perforated bottom and the band structure. Acta Physica Sinica, 2009, 58(9): 6363-6368. doi: 10.7498/aps.58.6363
    [15] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [16] Wei Xiang-Jun, Xu Qing, Wang Tian-Min, Jia Quan-Jie, Wang Huan-Hua, Feng Song-Lin. Microstructure of TiNi shape memory alloy films made of sputter-deposited Ni/Ti multilayers. Acta Physica Sinica, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [17] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [18] GAO HONG, WANG XUAN-ZHANG, Lü SHU-CHEN. PHASE TRANSITION OF A PERIODICALLY DILUTED ISING MAGNET. Acta Physica Sinica, 1996, 45(12): 2054-2060. doi: 10.7498/aps.45.2054
    [19] XU- ZHI-ZHAN, TANG YONG-HONG, QIAN AI-DI. INDIRECT EVIDENCE OF FORWARD SCATTERING——PERIODIC STRUCTURE OF THE STIMULATED BRILLOUIN SCATTERING SPECTRA OBTAINED IN LASER.PLASMA INTERACTION EXPERIMENTS. Acta Physica Sinica, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [20] HO KUO-CHU. ELECTRON BEAM FOCUSING WITH PERIODIC MAGNET STRUCTURES. Acta Physica Sinica, 1959, 15(10): 535-549. doi: 10.7498/aps.15.535
Metrics
  • Abstract views:  10117
  • PDF Downloads:  270
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2020
  • Accepted Date:  24 November 2020
  • Available Online:  09 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回