Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and magnetic properties of chromium doped zinc sulfide and cadmium sulfide nanostructures by solvothermal method

Zhang Zhu-Feng Ren Yin-Shuan

Citation:

Preparation and magnetic properties of chromium doped zinc sulfide and cadmium sulfide nanostructures by solvothermal method

Zhang Zhu-Feng, Ren Yin-Shuan
PDF
HTML
Get Citation
  • With the continuous development of nanotechnology, people have higher and higher requirements for the performances of nanomaterials. In the past few decades, researchers have used various methods to prepare nanomaterials with different dopants, and studied their optical and electrical properties. Nanomaterials with ferromagnetic properties have a wide range of applications, and there have been many reports about the ferromagnetic properties of doped magnetic elements. However, there have been few reports about Cr-doped ZnS and CdS. In order to obtain Cr-doped ZnS and CdS nanosheets with room temperature ferromagnetism, in this paper, using ethanolamine (EA) and ethylenediamine (EN) as mixed solvents, ZnS and CdS semiconductor nanostructures doped with different amounts of chromium are successfully prepared in S, ZnO and CdO sources by simple solvent thermal method. The X-ray diffraction (XRD) measurements show that the ZnS and CdS nanostructure have a wurtzite structure. Scanning electron microscopy (SEM) images show the morphologies of ZnS and CdS with different chromium content. When the content of Cr is 4.31 at% or 7.25 at%, the thickness of Cr-doped ZnS nanosheets is about 210–290 nm, and the morphology of undoped ZnS is composed of sub-morphologies of relatively thick nanosheets. The morphologies of CdS doped with different amounts of Cr are composed of sub-morphologies of snowflake like nanosheets with thickness of about 120–190 nm. Energy dispersive spectrometer (EDS) is used to observe the product composed of Cr, Zn, Cd, and S. The EDS measurement and calculation of the Cr content in Cr-doped ZnS nanosheets are 4.31 at% and 7.25 at% respectively, and those of the Cr content in Cr-doped CdS nanosheets are 1.84 at% and 2.12 at%. The vibration sample magnetometer(VSM) measurements show that ZnS doped with chromium exhibits ferromagnetism at room temperature, while the undoped ZnS exhibits diamagnetism at room temperature. The values of saturation magnetization Ms of Cr-doped ZnS nanosheets with Cr = 4.31 at% and 7.25 at% are 2.314 and 5.683 (10–3 emu/g), and the coercivity values of Hc are 54.721 and 88.441 Oe, respectively. The ferromagnetism of pure CdS is weak, while that of Cr-doped CdS is enhanced at room temperature. The saturation magnetization Ms values of Cr-doped CdS nanosheets with Cr = 0, 1.84 at% and 2.12 at% are 0.854, 2.351 and 7.525(10–3 emu/g), respectively, and the coercivity values of Hc are 74.631, 114.372 and 64.349 Oe, respectively. The values of saturation magnetization of ZnS and CdS increases with the Cr doping increasing. The ferromagnetism of Cr-doped ZnS at room temperature is confirmed by the experimental result, which is consistent with the ferromagnetism of Cr-doped ZnS calculated by the first principle. The origin of ferromagnetism of Cr-doped CdS is related to the doping of Cr in CdS lattice.
      Corresponding author: Ren Yin-Shuan, renyinshuan319@163.com
    • Funds: Project supported by the Science and Technology Department of Guizhou Province, China (Grant No. [2020]1Y208), the Guizhou Provincial Department of Education Project, China (Grant No. KY[2020]208), the Project of Qiannan Normal College for Nationalities, China (Grant Nos. 2018XJG0530, QNSY2018002), and the Research Project of Teaching Reform in College of Mobile Telecommunications, Chongqing University of Posts and Telecom, China (Grant No. YTJG2019050)
    [1]

    Xiang Q J, Cheng B, Yu J G 2015 Angew. Chem. Int. Ed. 54 11350Google Scholar

    [2]

    Jin J, Yu J G, Guo D P, Cui C, Ho W K 2015 Small 11 5262Google Scholar

    [3]

    Zhang J, Xu Q L, Qiao S Z, Yu J G 2013 Chem. Sum. Chem. Full. Papers 6 2009

    [4]

    Diroll B T, Koschitzky A, Murray C B 2014 J. Phys. Chem. Lett. 5 85Google Scholar

    [5]

    Diroll B T, Murray C B 2014 American Chem. Soc. Nano Lett. 8 6466

    [6]

    Zhong W W, Shen S J, He M, Wang D, Wang Z P, Lin Z P, Tu W G, Yu J G 2019 Appl. Catal., B 258 117967Google Scholar

    [7]

    Hu Y, Hao X Q, Cui Z W, Zhou J, Chu S Q, Wang Y, Zou Z G 2020 Appl. Catal., B 260 118131Google Scholar

    [8]

    Liu C H, Yu A F, Peng M Z, Song M, Liu W, Zhang Y, Zhai J Y 2016 J. Mater. Chem. C 120 6971

    [9]

    Purusothaman Y, Alluri N R, Chandrasekhar A, Kim S J 2017 J. Mater. Chem. C 5 415Google Scholar

    [10]

    Yang D C, Qiu Y, Wang T Y, Song W B, Wang Z Z, Xu J, Feng Q X, Zong Y, Sun X L 2016 J. Mater. Sci.-Mater. Electron. 27 6708Google Scholar

    [11]

    Junaid M, Imran M, Ikram M, Naz M, Aqeel M, Afzal H, Maeed H, All S 2019 Appl. Nano Sci. 18 0933

    [12]

    Murugesan R, Sivakumar S, Karthik K, Anandan P, Haris M 2019 Appl. Phys. A 125 281Google Scholar

    [13]

    Kumar B, Sinha N, Ray G, Godara S, Gupta M K 2014 Mater. Res. Bull. 59 267Google Scholar

    [14]

    ChengY J, Brahma S, Liu C P, Huang J L 2017 J. Alloys Compd. 728 1248Google Scholar

    [15]

    Sinha N, Goel S, Joseph A J, Yadav H, Batra K, Gupta M K, Kumar B 2018 Ceram. Int. 44 8582Google Scholar

    [16]

    Shim Y, Mills M E, Borovikov V, Amar J G 2009 Phys. Rev. E 5 1604

    [17]

    Elango M, Gopalakrishnan K, Vairam S, Thamilselvan M 2012 J. Alloys Compd. 538 48Google Scholar

    [18]

    Niwayama Y, Kura H, Sato T, Takahashi M, Ogawa T 2008 Phys. Rev. Lett. 92 202502

    [19]

    Haazen P P, Laloe J B, Nummy T J, Swagten J M, Herrero P J, Heiman D, Moodera J S 2012 Appl. Phys. Lett. 100 082404Google Scholar

    [20]

    Park S O, Lee H J, Cho Y C, Jeong S Y 2002 Appl. Phys. Lett. 80 22Google Scholar

    [21]

    Li Y F, Zhou Z, Jin P, Chen Y S, Zhang S B, Chen Z F 2010 J. Phys. Chem. C 114 12099

    [22]

    Madhu C, Sundaresan A, Rao C N R 2008 Phys. Rev. B 77 201306Google Scholar

    [23]

    Zhang Z F, Li J, Jian J K, Wu R, Sun Y F, Wang S F, Ren Y S, Li J J 2013 J. Cryst. Growth 372 39Google Scholar

    [24]

    Zhang Z F, Han L, Xie G Y, Liao Q L, Zhong B, Yu Y 2016 J. Mater. Sci.- Mater. Electron. 27 12490Google Scholar

    [25]

    Elavarthi P, Kumar A A, Murali G, Reddy D A, Gunasekhar K R 2016 J. Alloys Compd. 656 510Google Scholar

    [26]

    Zhang S X, Ogale S B, Kundaliya D C, Fu L F, Browning N D, Dhar S, Ramadan W, Higgins J S, Greene R L, Venkatesan T 2006 Appl. Phys. Lett. 89 012501Google Scholar

    [27]

    Ozaki N, Nishizawa N, Marcet S, Kuroda S, Eryu O, Takita K 2006 Phys. Rev. Lett. 97 037201Google Scholar

  • 图 1  Cr掺杂ZnS纳米片的XRD图谱, 三条曲线分别对应样本A (Cr原子百分比为4.31%, a), 样本B (Cr原子百分比为7.25%, b)和样本E (Cr原子百分比为0.00%, e)

    Figure 1.  Some of the powder XRD patterns of Cr-doped ZnS nanosheets. Three curves correspond to sample A (atomic percentages of Cr is4.31%, a), sample B (atomic percentages of Cr is 7.25%, b), sample E (atomic percentages of Cr is 0%, e), respectively.

    图 2  Cr掺杂CdS纳米片的XRD图谱, 三条曲线分别对应样本C (Cr原子百分比为1.84%, c), 样本D (Cr原子百分比为2.12%, d)和样本F (Cr原子百分比为0.00%, f)

    Figure 2.  Some of the powder XRD patterns of the Cr-doped CdS nanosheets. Three curves correspond to sample C (atomic percentages of Cr is 1.84%, c), sample D (atomic percentages of Cr is 2.12%, d) and sample F (atomic percentages of Cr is 0.00%, f), respectively.

    图 3  (a), (b), (e) Cr掺杂ZnS纳米片的SEM图案; (c), (d), (f) Cr掺杂CdS纳米片的SEM图案, 掺杂Cr的原子百分比分别为(a) 4.31%, (b) 7.25%, (e) 0, (c) 1.84%, (d) 2.12%, (f) = 0

    Figure 3.  (a), (b), (e) The SEM patterns of the Cr-doped ZnS nanosheets; (c), (d), (f) the SEM patterns of the Cr-doped CdS nanosheets. The atomic percentages of Cr doping are (a) 4.31%, (b) 7.25%, (e) 0, (c) 1.84%, (d) 2.12%, (f) 0, respectively.

    图 4  (a), (b) Cr掺杂ZnS纳米片的EDS图; (c), (d) Cr掺杂CdS纳米片的EDS图. 掺杂Cr的原子百分比分别为(a) 4.31%, (b) 7.25%, (c) 1.84%, (d) 2.12%

    Figure 4.  (a), (b) The EDS patterns of the Cr-doped ZnS nanosheets; (c), (d) the EDS patterns of the Cr-doped CdS nanosheets. The atomic percentages of Cr doping are (a) 4.31%, (b) 7.25%, (c) 1.84%, (d) 2.12%, respectively.

    图 5  未掺杂ZnS纳米片在室温下的磁化强度和磁场强度(M-H)曲线

    Figure 5.  M-H curves of undoped ZnS nanosheets at room temperature.

    图 6  未掺杂CdS纳米片在室温下的磁化强度和磁场强度(M-H)曲线

    Figure 6.  M-H curves of undoped CdS nanosheets at room temperature.

    图 7  Cr掺杂ZnS和CdS纳米片在室温下磁化强度和磁场强度(M-H)曲线

    Figure 7.  M-H curves of Cr-doped ZnS and CdS nanosheets at room temperature.

    图 8  Cr掺杂ZnS和CdS的饱和磁化强度(Ms)和矫顽力(Hc)的直方图

    Figure 8.  Histogram of saturation magnetization (Ms) and coercivity (Hc) of Cr-doped ZnS and CdS nanosheets.

    表 1  制备样品(A—F)的反应条件(所有实验在200 ℃下反应24 h)

    Table 1.  Reaction conditions of the prepared products (All experments are carried out 200 ℃ for 24 h).

    SampleCompsition of solvent/mLSulfur, zinc and cadium
    source/mmol
    Chromic chloride hexahydrate/mmolConcentration of oxalic
    acid/mmol
    A10 EN + 20 EA1 S + 1 ZnO0.2500.025
    B20 EN + 10 EA1 S + 1 ZnO0.5000.025
    E15 EN + 15 EA1 S + 1 ZnO00.025
    C10 EN + 20 EA1 S + 1 CdO0.2500.025
    D20 EN + 10 EA1 S + 1 CdO0.5000.025
    F15 EN + 15 EA1 S + 1 CdO00.025
    DownLoad: CSV

    表 2  SEM, EDS和VSM计算Cr掺杂的ZnS和CdS纳米片的Cr含量、形貌、尺寸、磁性、矫顽力和饱和磁化强度图

    Table 2.  Measured chromium content, morphology, size, magnetic properties, coercivity and saturation magnetization of Cr doped ZnS and CdS nanosheets using SEM, EDS and VSM.

    Cr content/%MorphologiesSize/nmMagnetic propertiesCoercivity/OeSaturation magnetization/
    (10–3 emu·g–1)
    ZnS0Hexagonal flake310—390Diamagnetism
    4.31flower-like sheet210—290Ferromagnetism54.7212.314
    7.25Flower-like sheet200—250Ferromagnetism88.4415.683
    CdS0Snowflake110—160Weak ferromagnetism74.6310.854
    1.84Snowflake100—170strong ferromagnetism114.3722.351
    2.12Snowflake100—200Strong ferromagnetism64.3497.525
    DownLoad: CSV
  • [1]

    Xiang Q J, Cheng B, Yu J G 2015 Angew. Chem. Int. Ed. 54 11350Google Scholar

    [2]

    Jin J, Yu J G, Guo D P, Cui C, Ho W K 2015 Small 11 5262Google Scholar

    [3]

    Zhang J, Xu Q L, Qiao S Z, Yu J G 2013 Chem. Sum. Chem. Full. Papers 6 2009

    [4]

    Diroll B T, Koschitzky A, Murray C B 2014 J. Phys. Chem. Lett. 5 85Google Scholar

    [5]

    Diroll B T, Murray C B 2014 American Chem. Soc. Nano Lett. 8 6466

    [6]

    Zhong W W, Shen S J, He M, Wang D, Wang Z P, Lin Z P, Tu W G, Yu J G 2019 Appl. Catal., B 258 117967Google Scholar

    [7]

    Hu Y, Hao X Q, Cui Z W, Zhou J, Chu S Q, Wang Y, Zou Z G 2020 Appl. Catal., B 260 118131Google Scholar

    [8]

    Liu C H, Yu A F, Peng M Z, Song M, Liu W, Zhang Y, Zhai J Y 2016 J. Mater. Chem. C 120 6971

    [9]

    Purusothaman Y, Alluri N R, Chandrasekhar A, Kim S J 2017 J. Mater. Chem. C 5 415Google Scholar

    [10]

    Yang D C, Qiu Y, Wang T Y, Song W B, Wang Z Z, Xu J, Feng Q X, Zong Y, Sun X L 2016 J. Mater. Sci.-Mater. Electron. 27 6708Google Scholar

    [11]

    Junaid M, Imran M, Ikram M, Naz M, Aqeel M, Afzal H, Maeed H, All S 2019 Appl. Nano Sci. 18 0933

    [12]

    Murugesan R, Sivakumar S, Karthik K, Anandan P, Haris M 2019 Appl. Phys. A 125 281Google Scholar

    [13]

    Kumar B, Sinha N, Ray G, Godara S, Gupta M K 2014 Mater. Res. Bull. 59 267Google Scholar

    [14]

    ChengY J, Brahma S, Liu C P, Huang J L 2017 J. Alloys Compd. 728 1248Google Scholar

    [15]

    Sinha N, Goel S, Joseph A J, Yadav H, Batra K, Gupta M K, Kumar B 2018 Ceram. Int. 44 8582Google Scholar

    [16]

    Shim Y, Mills M E, Borovikov V, Amar J G 2009 Phys. Rev. E 5 1604

    [17]

    Elango M, Gopalakrishnan K, Vairam S, Thamilselvan M 2012 J. Alloys Compd. 538 48Google Scholar

    [18]

    Niwayama Y, Kura H, Sato T, Takahashi M, Ogawa T 2008 Phys. Rev. Lett. 92 202502

    [19]

    Haazen P P, Laloe J B, Nummy T J, Swagten J M, Herrero P J, Heiman D, Moodera J S 2012 Appl. Phys. Lett. 100 082404Google Scholar

    [20]

    Park S O, Lee H J, Cho Y C, Jeong S Y 2002 Appl. Phys. Lett. 80 22Google Scholar

    [21]

    Li Y F, Zhou Z, Jin P, Chen Y S, Zhang S B, Chen Z F 2010 J. Phys. Chem. C 114 12099

    [22]

    Madhu C, Sundaresan A, Rao C N R 2008 Phys. Rev. B 77 201306Google Scholar

    [23]

    Zhang Z F, Li J, Jian J K, Wu R, Sun Y F, Wang S F, Ren Y S, Li J J 2013 J. Cryst. Growth 372 39Google Scholar

    [24]

    Zhang Z F, Han L, Xie G Y, Liao Q L, Zhong B, Yu Y 2016 J. Mater. Sci.- Mater. Electron. 27 12490Google Scholar

    [25]

    Elavarthi P, Kumar A A, Murali G, Reddy D A, Gunasekhar K R 2016 J. Alloys Compd. 656 510Google Scholar

    [26]

    Zhang S X, Ogale S B, Kundaliya D C, Fu L F, Browning N D, Dhar S, Ramadan W, Higgins J S, Greene R L, Venkatesan T 2006 Appl. Phys. Lett. 89 012501Google Scholar

    [27]

    Ozaki N, Nishizawa N, Marcet S, Kuroda S, Eryu O, Takita K 2006 Phys. Rev. Lett. 97 037201Google Scholar

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure. Acta Physica Sinica, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [4] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [5] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] Wang Feng, Lin Wen, Wang Li-Zi, Ge Yong-Ming, Zhang Xiao-Ting, Lin Hai-Rong, Huang Wei-Wei, Huang Jun-Qin, W. Cao. Magnetic properties of the Cu-doped ZnO:experiments and theory. Acta Physica Sinica, 2014, 63(15): 157502. doi: 10.7498/aps.63.157502
    [7] Xie Ling-Ling, Chen Shui-Yuan, Liu Feng-Jin, Zhang Jian-Min, Lin Ying-Bin, Huang Zhi-Gao. Ferromagnetism of Zn0.97Cr0.03O synthesized by PLD. Acta Physica Sinica, 2014, 63(7): 077102. doi: 10.7498/aps.63.077102
    [8] Zhao Cui-Lian, Zhen Cong-Mian, Ma Li, Pan Cheng-Fu, Hou Deng-Lu. Morphology and ferromagnetism of Ge nanostructure. Acta Physica Sinica, 2013, 62(3): 037502. doi: 10.7498/aps.62.037502
    [9] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [10] Ding Bin-Feng, Xiang Feng-Hua, Wang Li-Ming, Wang Hong-Tao. Amending the ferromagnetic properties of Ga0.94Mn0.06As films by He+ irradiation. Acta Physica Sinica, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [11] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [12] Liu Jun, Zhou Wei-Chang, Zhang Jian-Fu. Synthesis and photonics characteristics research of CdS:Cu 1D nanostructures. Acta Physica Sinica, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [13] Shi Li-Bin, Xiao Zhen-Lin. Origin of ferromagnetic properties in Ni doped ZnO by the first principles study. Acta Physica Sinica, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [14] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [15] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [16] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [17] Kuang An-Long, Liu Xing-Chong, Lu Zhong-Lin, Ren Shang-Kun, Liu Cun-Ye, Zhang Feng-Ming, Du You-Wei. Room-temperature ferromagnetism in Mn-doped SnO2 diluted magnetic semiconductor. Acta Physica Sinica, 2005, 54(6): 2934-2937. doi: 10.7498/aps.54.2934
    [18] Yang Xu-Dong, Xu Zhong-Ying, Luo Xiang-Dong, Fang Zai-Li, Li Guo-Hua, Su Yin-Qiang, Ge Wei-Kun. Time-resolved photoluminescence of Te isoelectronic center in ZnS. Acta Physica Sinica, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [19] . Acta Physica Sinica, 2002, 51(2): 410-414. doi: 10.7498/aps.51.410
    [20] RONG CHUAN-BING, ZHAO YU-HUA, XU MIN, ZHAO HENG-HE, CHEHG LI-ZHI, HE KAI-YUAN. STRUCTURE AND MAGNETIC PROPERTIES OF Fe62Co8-x(Cr,Mo)xNb4Zr6B20 AMORPHOUSALLOY WITH A WIDE SUPERCOOLED LIQUID REGION. Acta Physica Sinica, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
Metrics
  • Abstract views:  5581
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2020
  • Accepted Date:  10 February 2021
  • Available Online:  25 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回