Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and numerical studies of the phase velocity of wakefields in plasma driven by self-modulated proton beams with electron beam seeding

Hua Jin-Yu Sheng Zheng-Ming

Citation:

Theoretical and numerical studies of the phase velocity of wakefields in plasma driven by self-modulated proton beams with electron beam seeding

Hua Jin-Yu, Sheng Zheng-Ming
PDF
HTML
Get Citation
  • Significant progress has been made in the studies of wakefield excitation in plasma by a self-modulated high energy proton beam in the past decade. The electron beams accelerated up to 2 GeV by using such a wakefield were demonstrated in the AWAKE experiment at CERN in 2018. Aiming at the application of high energy particle accelerators, new ideas have been investigated in recent years, such as seeding the proton beam self-modulation with an electron beam in order to enhance the strength and stability of the wakefield or adding a density transition in the plasma distribution to enhance the phase velocity and the strength of the wakefield. Here in this work, we investigate the effects of electron beam seeding on the phase velocity of the wakefield generated by the modulated proton beam in plasma. The physical mechanisms responsible for the phase velocity change and the roles played by the electron beam seeding are discussed. The theoretical analysis and two-dimensional particle-in-cell simulations show that both the growth rate and the phase velocity of the wakefield generated by the modulated proton beam can be enhanced by the electron beam seeding. The higher the charge density of the electron beam, the more significant the enhancement effects. The effects of electron beam energy and proton beam longitudinal profiles on the increase of phase velocity are also studied. It is shown that the evolution of the electron beam distribution has a significant effect on the seeding self-modulation process, and thus affecting the phase velocity. A self-focusing electron seeding beam can increase the phase velocity of the wakefield even to superluminal while an expanding seeding beam can reduce the phase velocity and destroy the stability of the whole process. This work may benefit the proton beam seeding self-modulation acceleration and its applications.
      Corresponding author: Sheng Zheng-Ming, zmsheng@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11991074)
    [1]

    Joshi C, Katsouleas T 2003 Phys. Today 56 47

    [2]

    Esarey E, Sprangle P, Krall J, Ting A 1996 IEEE Trans. Plasma Sci. 24 252Google Scholar

    [3]

    Kudryavtsev A M, Lotov K V, Skrinsky A N 1998 Nucl. Instrum Methods A 410 388Google Scholar

    [4]

    Rosenzweig J, Barov N, Murokh A, Colby E, Colestock P 1998 Nucl. Instrum Methods A 410 532Google Scholar

    [5]

    Shiltsev V D 2012 Phys. Usp. 55 965Google Scholar

    [6]

    Pukhov A, Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355

    [7]

    Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X, Xu Z Z 2015 Chin. Phys. B 24 015205Google Scholar

    [8]

    Shen Z C, Min C, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F, Sheng Z M 2017 Chin. Phys. B 26 115204Google Scholar

    [9]

    祝昕哲, 刘维媛, 陈民 2020 物理学报 69 035201Google Scholar

    Zhu X Z, Liu W Y, Chen M 2020 Acta Phys. Sin. 69 035201Google Scholar

    [10]

    Caldwell A, Lotov K, Pukhov A, Simon F 2009 Nat. Phys. 5 363Google Scholar

    [11]

    Xia G, Caldwell A, Lotov K, Pukhov A, Kumar N, An W, Lu W, Mori B, Joshi C, Huang C, Muggli P, Assmann R 2010 AIP Conf. Proc. 1299 510

    [12]

    Kumar N, Pukhov A, Lotov K 2010 Phys. Rev. Lett. 104 255003Google Scholar

    [13]

    Batsch F 2020 J. Phys. Conf. Ser. 1596 012006Google Scholar

    [14]

    Caldwell A, Adli E, Amorim L, et al. 2016 Nucl. Instrum Methods A 829 3Google Scholar

    [15]

    Adli E, Ahuja A, Apsimon O, et al. 2018 Nature 561 363Google Scholar

    [16]

    Turner M, Adli E, Ahuja A, et al. 2019 Phys. Rev. Lett. 122 054801Google Scholar

    [17]

    Martorelli R, Pukhov A 2016 Phys. Plasmas 23 053109Google Scholar

    [18]

    Siemon C, Khudik V, Austin Yi S, et al. 2013 Phys. Plasmas 20 103111Google Scholar

    [19]

    Schroeder C B, Benedetti C, Esarey E, et al. 2011 Phys. Rev. Lett. 107 145002Google Scholar

    [20]

    Pukhov A, Kumar N, Tückmantel T, et al. 2011 Phys. Rev. Lett. 107 145003Google Scholar

    [21]

    Schroeder C B, Benedetti C, Esarey E, et al. 2012 Phys. Rev. E 86 026402Google Scholar

    [22]

    Muggli P, Morales Guzman P I, Bachmann A M, Hüther M, Moreira M, Turner M, Vieira J 2020 J. Phys. Conf. Ser. 1596 012066Google Scholar

    [23]

    Lotov K V, Minakov V A 2020 Plasma Phys. Controlled Fusion 62 115025Google Scholar

    [24]

    Lotov K V 2003 Phys. Rev. Spec. Top. Accel. Beams 6 061301Google Scholar

    [25]

    Li Y 2020 Studies of Proton Driven Plasma Wakefield Acceleration (Springer Nature Press) pp43−47.

    [26]

    Lotov K V 2013 Phys. Plasmas 20 083119Google Scholar

  • 图 1  $ \xi =100 c/{\omega }_{\mathrm{p}} $处尾波相速度随时间变化 (a) 电子束密度较低时; (b) 电子束密度较大时

    Figure 1.  Change of the phase velocity with time at $ \xi =100 c/{\omega }_{\mathrm{p}} $: (a) Low electron beam density; (b) high electron density.

    图 2  电子束种子自调制模拟结果 (a) 无电子束时的最大电场分布; (b) 无电子束时的相速度分布; (c) 电子束中心密度为$ 1{n}_{\mathrm{b}} $时的最大电场分布; (b) 电子束中心密度为$ 1{n}_{\mathrm{b}} $时的相速度分布; (e) 电子束中心密度为$ 10{n}_{\mathrm{b}} $时的最大电场分布; (f) 电子束中心密度为$ 10{n}_{\mathrm{b}} $时的相速度分布

    Figure 2.  Results of the simulation: (a) Distribution of Emax when no seeding; (b) distribution of phase velocity when no seeding; (c) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (d) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (e) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $; (f) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

    图 3  (a) 不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $情况下尾波峰值相位的变化; (b) $ \xi =100\; c/{\omega }_{\mathrm{p}} $处不同$ {n}_{\mathrm{b}\mathrm{e}} $条件下模拟得到的尾波相速度随时间变化; (c) $ \xi =300\; c/{\omega }_{\mathrm{p}} $处不同$ {n}_{\mathrm{b}\mathrm{e}} $条件下模拟得到的尾波相速度随时间变化

    Figure 3.  (a) Phase change of the wakefield peak with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $; (b) evolution of the phase velocity at $ \xi =100 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $; (c) evolution of the phase velocity at $ \xi =300 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $.

    图 4  不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $情况下最大电场随时间的分布

    Figure 4.  Evolution of the maximum electric field with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $.

    图 5  (a) 电子束能量$ {E}_{\mathrm{b}\mathrm{e}}=100\mathrm{M}\mathrm{e}\mathrm{V} $时不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $的平衡态分布; (b) $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $时不同电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $的平衡态分布

    Figure 5.  (a) Equilibrium configuration with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ when Ebe =100 MeV; (b) equilibrium configuration with different E when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

    图 6  电子束压缩引起的质子束平衡态变化, 即在三个时刻的质子束平衡态分布

    Figure 6.  Equilibrium configuration of proton beam with a compressing electron beam.

    图 7  利用电子束种子尾波调制质子束的模拟结果 (a), (b), (c)分别对应电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeV时的最大电场随时间变化; (d), (e), (f) 分别对应电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeV时的相速度随时间变化

    Figure 7.  Simulation of proton beam modulation with electron beam seeding:(a), (b), (c) The maximum electric fields as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively; (d), (e), (f) the phase velocity as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively.

    图 8  (a) 在$ \xi =100 c/{\omega }_{\mathrm{p}} $处不同电子束能量模拟得到的尾波相速度随时间变化; (b) 在$ \xi =300 c/{\omega }_{\mathrm{p}} $处不同电子束能量模拟得到的尾波相速度随时间变化

    Figure 8.  (a) Phase velocity as a function of time at $ \xi =100 c/{\omega }_{\mathrm{p}} $ for different electron energy; (b) phase velocity as a function of time at $ \xi =300 c/{\omega }_{\mathrm{p}} $ for different electron energy.

    图 9  (a) 在$ \xi =500 c/{\omega }_{\mathrm{p}} $处模拟得到的尾波相速度随时间变化; (b) 在$ \xi =750 c/{\omega }_{\mathrm{p}} $处模拟得到的尾波相速度随时间变化

    Figure 9.  (a) Phase velocity as a function of time at $ \xi =500 c/{\omega }_{\mathrm{p}} $; (b) phase velocity at $ \xi =750 c/{\omega }_{\mathrm{p}} $.

  • [1]

    Joshi C, Katsouleas T 2003 Phys. Today 56 47

    [2]

    Esarey E, Sprangle P, Krall J, Ting A 1996 IEEE Trans. Plasma Sci. 24 252Google Scholar

    [3]

    Kudryavtsev A M, Lotov K V, Skrinsky A N 1998 Nucl. Instrum Methods A 410 388Google Scholar

    [4]

    Rosenzweig J, Barov N, Murokh A, Colby E, Colestock P 1998 Nucl. Instrum Methods A 410 532Google Scholar

    [5]

    Shiltsev V D 2012 Phys. Usp. 55 965Google Scholar

    [6]

    Pukhov A, Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355

    [7]

    Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X, Xu Z Z 2015 Chin. Phys. B 24 015205Google Scholar

    [8]

    Shen Z C, Min C, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F, Sheng Z M 2017 Chin. Phys. B 26 115204Google Scholar

    [9]

    祝昕哲, 刘维媛, 陈民 2020 物理学报 69 035201Google Scholar

    Zhu X Z, Liu W Y, Chen M 2020 Acta Phys. Sin. 69 035201Google Scholar

    [10]

    Caldwell A, Lotov K, Pukhov A, Simon F 2009 Nat. Phys. 5 363Google Scholar

    [11]

    Xia G, Caldwell A, Lotov K, Pukhov A, Kumar N, An W, Lu W, Mori B, Joshi C, Huang C, Muggli P, Assmann R 2010 AIP Conf. Proc. 1299 510

    [12]

    Kumar N, Pukhov A, Lotov K 2010 Phys. Rev. Lett. 104 255003Google Scholar

    [13]

    Batsch F 2020 J. Phys. Conf. Ser. 1596 012006Google Scholar

    [14]

    Caldwell A, Adli E, Amorim L, et al. 2016 Nucl. Instrum Methods A 829 3Google Scholar

    [15]

    Adli E, Ahuja A, Apsimon O, et al. 2018 Nature 561 363Google Scholar

    [16]

    Turner M, Adli E, Ahuja A, et al. 2019 Phys. Rev. Lett. 122 054801Google Scholar

    [17]

    Martorelli R, Pukhov A 2016 Phys. Plasmas 23 053109Google Scholar

    [18]

    Siemon C, Khudik V, Austin Yi S, et al. 2013 Phys. Plasmas 20 103111Google Scholar

    [19]

    Schroeder C B, Benedetti C, Esarey E, et al. 2011 Phys. Rev. Lett. 107 145002Google Scholar

    [20]

    Pukhov A, Kumar N, Tückmantel T, et al. 2011 Phys. Rev. Lett. 107 145003Google Scholar

    [21]

    Schroeder C B, Benedetti C, Esarey E, et al. 2012 Phys. Rev. E 86 026402Google Scholar

    [22]

    Muggli P, Morales Guzman P I, Bachmann A M, Hüther M, Moreira M, Turner M, Vieira J 2020 J. Phys. Conf. Ser. 1596 012066Google Scholar

    [23]

    Lotov K V, Minakov V A 2020 Plasma Phys. Controlled Fusion 62 115025Google Scholar

    [24]

    Lotov K V 2003 Phys. Rev. Spec. Top. Accel. Beams 6 061301Google Scholar

    [25]

    Li Y 2020 Studies of Proton Driven Plasma Wakefield Acceleration (Springer Nature Press) pp43−47.

    [26]

    Lotov K V 2013 Phys. Plasmas 20 083119Google Scholar

  • [1] Zhao Yue-Qi, Cui Pei-Lin, Li Jian-Long, Li Bo-Yuan, Zhu Xin-Zhe, Chen Min, Liu Zhen-Yu. Simulation study on gas flow in curved capillary used in laser wakefield acceleration. Acta Physica Sinica, 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] Jiang Kang-Nan, Feng Ke, Ke Lin-Tong, Yu Chang-Hai, Zhang Zhi-Jun, Qin Zhi-Yong, Liu Jian-Sheng, Wang Wen-Tao, Li Ru-Xin. High-quality laser wakefield electron accelerator. Acta Physica Sinica, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [4] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] Zhang Tao, Hou Hong, Bao Ming. Imaging through coda wave interferometryvia sparse reconstruction. Acta Physica Sinica, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [6] Li Rong-Feng, Gao Shu-Chao, Xiao Chao-Fan, Xu Zhi-Yi, Xue Xing-Tai, Liu Jian-Bo, Zhao Yan-Ying, Chen Jia-Er, Lu Hai-Yang, Yan Xue-Qing. Generation of ultrafast broadband small angle hundreds MeV electron bunches from laser wakefield acceleration. Acta Physica Sinica, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [7] Wang Zhen-Yu, Tang Chang-Jian. Slow-wave electromagnetic instability driven by wiggling relativistic electron beam in ion-channel. Acta Physica Sinica, 2011, 60(5): 055204. doi: 10.7498/aps.60.055204
    [8] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [9] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [10] Wang Jian, Gu Yu-Qiu, Cai Da-Feng, Jiao Chun-Ye, Wu Yu-Chi, He Ying-Ling, Teng Jian, Yang Xiang-Dong, Wang Lei, Zhao Zong-Qing. Photon acceleration in the laser wakefield. Acta Physica Sinica, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [11] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [12] Xu Han, Chang Wen-Wei, Yin Yan. Frequency shift of laser pulse propagating in wakefield. Acta Physica Sinica, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [13] Xu Han, Chang Wen-Wei, Yin Yan, Zhuo Hong-Bin. PIC simulation of the wake field acceleration driven by triangle-shaped laser pulse. Acta Physica Sinica, 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [14] Xu Han, Chang Wen-Wei, Yin Yan, Zhuo Hong-Bin, Ma Yan-Yun. PIC simulation of the transverse wave-breaking in laser wake-field. Acta Physica Sinica, 2003, 52(7): 1701-1706. doi: 10.7498/aps.52.1701
    [15] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] YU WEI, XU ZHI-ZHAN, MA JIN-XIU, CHEN RONG-QING. DEVELOPMENT OF THREE-WAVE INTERACTIONS IN A PLASMA BEAT-WAVE ACCELERATOR. Acta Physica Sinica, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [17] CHANG WEN-WEI, ZHANG LI-FU, SHAO FU-QIU. LASER PLASMA WAVE ELECTRON ACCELERATORS. Acta Physica Sinica, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [18] MA JIN-XIU, XU ZHI-ZHAN. THE ELIMINATION OF PUMP DEPLETION IN LASER-PLASMA BEAT-WAVE ACCELERATORS. Acta Physica Sinica, 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [19] MA JING-XIU, XU ZHI-ZHAN. EXCITATION OF ELECTRON PLASMA WAVES BY BEATING TWO SELF-TRAPPED LASER BEAMS. Acta Physica Sinica, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
    [20] HE KAI-FEN. THE SOLITON INDUCED BY THE FILAMENTARY PERTURBATION ON A FAST ELECTRON BEAM. Acta Physica Sinica, 1983, 32(7): 954-959. doi: 10.7498/aps.32.954
Metrics
  • Abstract views:  4160
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2020
  • Accepted Date:  22 January 2021
  • Available Online:  26 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回