Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring target imaging in underwater bubble group environment based on polarization information

Song Qiang Sun Xiao-Bing Liu Xiao Ti Ru-Fang Huang Hong-Lian Wang Hao

Citation:

Exploring target imaging in underwater bubble group environment based on polarization information

Song Qiang, Sun Xiao-Bing, Liu Xiao, Ti Ru-Fang, Huang Hong-Lian, Wang Hao
PDF
HTML
Get Citation
  • Underwater optical imaging is an important way to implement the seabed exploration and target recognition. There occur a lot of bubbles due to the sea wave, ship wake, marine creatures’ swimming and breathing. The underwater target imaging effect is often limited by light scattering effect of bubbles, so it is difficult to identify targets, and the general optical technology is difficult to eliminate the bubbles’ influence on imaging. In this article from the bubble theoretical derivation and the bubble simulation, we investigate the changing trend of target’s polarization information under the condition of different light incident angles in the underwater environment, data gathering, data processing and data analysis, by using the polarimetric image fusion method to suppress the influence of bubbles to build a complete target imaging research system under bubble group environment in line with the above several big aspects. According to the above problem, in this paper, the change of light intensity and polarization information of incoming light in underwater single bubble, bubble group and target’s surface are investigated; the target imaging in the bubble group environment with the change of light incident angle and polarization imaging band on the basis of the construction of experimental platform of underwater bubbles is explored; the change trends of strength and polarization information with different metal targets are studied; the change trends of strength and polarization information of underwater target under thickness of different bubble groups are analyzed; finally the underwater target images under the condition of different imaging resolutions and the using of fusion methods of polarization feature extraction and visual information of image to suppress the bubble influence on underwater target imaging are studied. The experimental results show that the target imaging under bubble group environment is influenced by many factors, and using polarimetric image fusion method can well weaken the bubble group’s influence on imaging, and improve the clarity of underwater target. In view of difficult problems about target identification existing in the high-density bubble group environment, we will use energy loss compensation or machine learning method to realize the target recognition and image restoration in the future.
      Corresponding author: Sun Xiao-Bing, xbsun@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFE0201400), the Common Key Technology Project for Satellite Application of China (Grant No. 30-Y20A010-9007-17/18), the National High Resolution Major Special Project of China (Grant No. GFZX04011805), and the Key Project of Hefei Research Institute of Chinese Academy of Sciences (Grant No. Y73H9P1801)
    [1]

    Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar

    [2]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar

    [3]

    张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)

    [4]

    Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar

    [5]

    Stramski D 1994 SPIE 2258 704

    [6]

    Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar

    [7]

    Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar

    [8]

    Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar

    [9]

    Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar

    [10]

    梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 物理学报 62 060704Google Scholar

    Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar

    [11]

    Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar

    [12]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [13]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [14]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [15]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

    [16]

    唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 物理学报 55 2257Google Scholar

    Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar

    [17]

    Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar

    [18]

    Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136

    [19]

    杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar

    Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar

    [20]

    Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar

    [21]

    陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908

    Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908

    [22]

    陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar

    Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar

    [23]

    高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar

    Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar

  • 图 1  Fresnel反射原理图

    Figure 1.  Principle diagram of the Fresnel reflection.

    图 2  点光源入射到水中气泡界面[16]

    Figure 2.  Light’s incidence to water bubble interface[16].

    图 3  不同气泡大小和厚度条件下的偏振信息变化趋势

    Figure 3.  Change trend of polarization information with different bubble size and thickness.

    图 4  不同材质目标表面的S, P方向的反射比率曲线和偏振度变化趋势 (a) 铜材质; (b) 铝材质; (c)铁材质

    Figure 4.  Reflectance curve of the different target’s surface and the change trend of DOLP: (a) Cuprum; (b) aluminium; (c) iron

    图 5  光子在含有目标物的气泡群中传输过程模拟图

    Figure 5.  Simulation diagram of photon transport process in bubble group containing target.

    图 6  偏振成像系统和水下气泡实验平台示意图 (a)多波段偏振成像系统; (b) 水下气泡偏振成像系统示意图

    Figure 6.  Polarization imaging system and underwater bubble experiment platform: (a) Multi-band polarization imaging system; (b) underwater bubble polarization system.

    图 7  不同气泡密度影响下的图像采集 (a)无气泡图像; (b)低密度气泡图像; (c)中密度气泡图像; (d)高密度气泡图像

    Figure 7.  Image acquisition under the influence of the different density of bubbles: (a) No bubble; (b) low density; (c) medium density; (d) high density.

    图 8  水下气泡成像示意图

    Figure 8.  Diagram of underwater bubble imaging.

    图 9  不同夹角下的目标强度和偏振信息变化图 (a)不同夹角下的强度辐射图; (b)不同夹角下的偏振度信息图

    Figure 9.  Strength and polarization information of underwater target under different angles: (a) Intensity figure under different angles; (b) DOP figure under different angles.

    图 10  不同波段条件下的水下目标成像情况 (a)材质1; (b)材质2

    Figure 10.  The underwater target imaging under the condition of different bands: (a) Material 1; (b) material 2

    图 11  不同材质目标物 (a)铁片; (b)铝片; (c)黄铜片; (d)紫铜片

    Figure 11.  Object of different material: (a) Iron sheet; (b) aluminum sheet; (c) brass sheet; (d) copper sheet.

    图 12  不同材质目标物强度信息图和偏振信息图 (a)铁片; (b)铝片; (c)黄铜片; (d)紫铜片

    Figure 12.  Intensity and polarization information of different material: (a) Iron sheet; (b) aluminum sheet; (c) brass sheet; (d) copper sheet.

    图 13  典型金属材质的变化对目标偏振成像的影响 (a)不同材质目标强度信息统计分析; (b)不同材质目标偏振度信息统计分析

    Figure 13.  Influence of changes of the typical metal material on the target polarization imaging: (a) Target’s strength information statistics and analysis of different material; (b) target’s polarization degree statistics and analysis of different material.

    图 14  不同气泡密度下的强度图和偏振信息图 (a) 强度图; (b) 偏振度图

    Figure 14.  Figure of intensity and polarization information under different bubble density: (a) Intensity’s figure; (b) DOP’s figure.

    图 15  气泡群厚度对水下气泡目标偏振成像的影响 (a)强度信息变化趋势图; (b)偏振度信息变化趋势图

    Figure 15.  Bubble group density effects on the underwater bubble target polarization imaging: (a) Trend chart of intensity information; (b) trend chart of DOP information.

    图 16  不同成像距离条件下的水下目标内部细节图 (a) 0.5 m; (b) 0.6 m; (c) 0.7 m; (d) 0.8 m; (e) 0.9 m; (f) 1.0 m

    Figure 16.  The underwater target details views under the condition of different imaging distance: (a) 0.5 m; (b) 0.6 m; (c) 0.7 m; (d) 0.8 m; (e) 0.9 m; (f) 1.0 m.

    图 17  目标1强度图、偏振融合图与灰度直方图 (a)强度图与对应直方图; (b)偏振融合图与对应直方图

    Figure 17.  Goal 1’s strength and gray histogram and polarization fusion: (a) Intensity and histogram; (b) polarization fusion and histogram.

    图 18  第一行为中等气泡密度强度图, 第二行为偏振信息融合处理结果图 (a)目标2; (b)目标3; (c)目标4; (d)目标5; (e)目标6

    Figure 18.  The first behavior indicates intensity figure of bubbles medium density, the second behavior indicates figure of polarization information fusion processing results: (a) Target 2; (b) target 3; (c) target 4; (d) target 5; (e) target 6.

    表 1  水中气泡外界面多次反射、折射后的强度变化

    Table 1.  Intensity of the bubble external interface with multiple reflection and refraction.

    入射角度/(°)水中气泡外界面的光强
    1 (A点)2 (B点)3 (C点)4 (D点)
    50.02010.96030.01933.8662 × 10–4
    100.02010.96020.01933.9015 × 10–4
    150.02020.95990.01944.0710 × 10–4
    200.02070.95900.01984.6056 × 10–4
    250.02200.95670.02076.0192 × 10-4
    300.02510.95090.02309.5371 × 10-4
    350.03280.93640.02870.0019
    400.05420.89710.04360.0045
    450.13420.75700.08880.0158
    460.17610.68780.10620.0223
    470.24660.57860.12620.0334
    480.39450.37820.13530.0552
    48.75(临界值)0.93720.00420.00390.0037
    DownLoad: CSV

    表 2  水中气泡外界面多次反射、折射后的偏振度变化

    Table 2.  The DOP of the bubble external interface with multiple reflection and refraction.

    入射角度/(°)水中气泡外界面的偏振度/%
    1 (A点)2 (B点)3 (C点)4 (D点)
    52.040.081.964.00
    108.360.348.0216.26
    1519.460.8018.6936.81
    2035.941.5234.6162.74
    2557.602.5955.8485.83
    3081.324.1879.8697.72
    3598.206.6697.9599.98
    4094.9710.8693.7899.83
    4563.9419.6350.6786.56
    4654.0822.8235.6675.23
    4742.4027.2317.1555.51
    4827.1734.327.8919.70
    48.75(临界值)1.8150.2548.8847.50
    DownLoad: CSV

    表 3  不同成像分辨率条件下的图像评价指标

    Table 3.  Image evaluation index under the condition of different imaging resolution.

    距离/m信息熵平均梯度边缘强度
    0.55.92631.349912.7868
    0.65.91451.464714.2792
    0.75.93111.494614.6517
    0.86.00081.670316.5898
    0.95.95631.785017.8742
    1.05.95951.722517.2655
    DownLoad: CSV

    表 4  图像评价指标

    Table 4.  Image evaluation index.

    材质类别图像类别信息熵平均梯度边缘强度方差
    目标1原强度图7.55412.600728.59804.9371 × 103
    融合结果图5.363114.9552146.11385.6631 × 103
    目标2原强度图6.02361.107711.9431654.3071
    融合结果图5.648317.6877169.19625.7606 × 103
    目标3原强度图6.06484.137039.8161508.8038
    融合结果图5.633616.3178156.54865.8342 × 103
    目标4原强度图6.08061.130912.2131965.9536
    融合结果图5.778517.5954169.13985.7043 × 103
    目标5原强度图6.55711.422715.52751.0356 × 103
    融合结果图5.721115.0098146.11775.8561 × 103
    目标6原强度图6.21111.429915.63481.2907 × 103
    融合结果图5.517317.9909174.82086.0343 × 103
    DownLoad: CSV
  • [1]

    Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar

    [2]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar

    [3]

    张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)

    [4]

    Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar

    [5]

    Stramski D 1994 SPIE 2258 704

    [6]

    Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar

    [7]

    Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar

    [8]

    Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar

    [9]

    Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar

    [10]

    梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 物理学报 62 060704Google Scholar

    Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar

    [11]

    Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar

    [12]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [13]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [14]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [15]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

    [16]

    唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 物理学报 55 2257Google Scholar

    Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar

    [17]

    Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar

    [18]

    Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136

    [19]

    杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar

    Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar

    [20]

    Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar

    [21]

    陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908

    Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908

    [22]

    陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar

    Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar

    [23]

    高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar

    Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar

  • [1] Chen Si, Zhang Hai-Yang, Jin Fa-Hong, Wang Lin, Zhao Chang-Ming. Research on multi-dimensional micro-motion feature extraction of moving targets. Acta Physica Sinica, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [3] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [4] Liu Bin, Zhao Peng-Xiang, Zhao Xia, Luo Yue, Zhang Li-Chao. Multiple aperture underwater imaging algorithm based on polarization information fusion. Acta Physica Sinica, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [5] Wu Geng-Kun, Song Jin-Bao, Fan Wei. Electromagnetic scattering characteristics analysis of freak waves and characteristics identification. Acta Physica Sinica, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [6] Dou Jian-Tai, Gao Zhi-Shan, Ma Jun, Yuan Cao-Jin, Yang Zhong-Ming. Correction of axial distance error in ptychography based on image information entropy. Acta Physica Sinica, 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [7] Chen Ping, Yin Xiao-Gang, Pan Jin-Xiao, Han Yan. Algorithm of high-dynamic fusion image gray characterization based on variable energy. Acta Physica Sinica, 2014, 63(20): 208703. doi: 10.7498/aps.63.208703
    [8] Feng Xin, Li Chuan, Hu Kai-Qun. Infrared and visible image fusion based on deep Boltzmann model. Acta Physica Sinica, 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [9] Chen Shan-Jing, Hu Yi-Hua, Sun Du-Juan, Xu Shi-Long. A simulation method by air and space integrated fusion based on hyper-/multispectral imagery. Acta Physica Sinica, 2013, 62(20): 204201. doi: 10.7498/aps.62.204201
    [10] Deng Yong, Zhang Xuan-Xuan, Luo Zhao-Yang, Xu Jun, Yang Xiao-Quan, Meng Yuan-Zheng, Gong Hui, Luo Qing-Ming. Image reconstruction algorithm for steady-state diffuse optical tomography with structural priori information. Acta Physica Sinica, 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [11] Zhao Wen-Da, Zhao Jian, Xu Zhi-Jun. Variational multi-source image fusion based on the structure tensor. Acta Physica Sinica, 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [12] Jiao Yi-Ming, Zhou Yan, Li Yong-Gao, Li Chang-Zheng. How to obtain q-profile from results of polarimeter. Acta Physica Sinica, 2012, 61(21): 215201. doi: 10.7498/aps.61.215201
    [13] Zhao Liao-Ying, Ma Qi-Liang, Li Xiao-Run. Multi-spectral and panchromatic image fusion based on HIS-wavelet transform and MOPSO algorithm. Acta Physica Sinica, 2012, 61(19): 194204. doi: 10.7498/aps.61.194204
    [14] Gan Tian, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Image fusion algorithm based on block-DCT in wavelet domain. Acta Physica Sinica, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [15] Sun Yao, Zhang Chun-Min, Du Juan, Zhao Bao-Chang. A new method of polarization measurement based on the novel polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [16] Wang Na, Chen Ke-An. Regression model of timbre attribute for underwater noise and its application to target recognition. Acta Physica Sinica, 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [17] Li Yan-Hui, Wu Zhen-Sen, Gong Yan-Jun, Zhang Geng, Wang Ming-Jun. Laser one-dimensional range profile. Acta Physica Sinica, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [18] Gong Yan-Jun, Wu Zhen-Sen. Analytical model of range-Doppler image of rotating cylinders and cones. Acta Physica Sinica, 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [19] Zhang Chuang, Bai Lian-Fa, Zhang Yi. Method of fusing dual-spectrum low light Level images based on gray-scale spatial correlation. Acta Physica Sinica, 2007, 56(6): 3227-3233. doi: 10.7498/aps.56.3227
    [20] Zong Xiao-Ping, Xu Yan, Dong Jiang-Tao. Fuzzy edge detection technique using multi-information fusion algorithm. Acta Physica Sinica, 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
Metrics
  • Abstract views:  5953
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2020
  • Accepted Date:  06 March 2021
  • Available Online:  13 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回