-
Underwater optical imaging is an important way to implement the seabed exploration and target recognition. There occur a lot of bubbles due to the sea wave, ship wake, marine creatures’ swimming and breathing. The underwater target imaging effect is often limited by light scattering effect of bubbles, so it is difficult to identify targets, and the general optical technology is difficult to eliminate the bubbles’ influence on imaging. In this article from the bubble theoretical derivation and the bubble simulation, we investigate the changing trend of target’s polarization information under the condition of different light incident angles in the underwater environment, data gathering, data processing and data analysis, by using the polarimetric image fusion method to suppress the influence of bubbles to build a complete target imaging research system under bubble group environment in line with the above several big aspects. According to the above problem, in this paper, the change of light intensity and polarization information of incoming light in underwater single bubble, bubble group and target’s surface are investigated; the target imaging in the bubble group environment with the change of light incident angle and polarization imaging band on the basis of the construction of experimental platform of underwater bubbles is explored; the change trends of strength and polarization information with different metal targets are studied; the change trends of strength and polarization information of underwater target under thickness of different bubble groups are analyzed; finally the underwater target images under the condition of different imaging resolutions and the using of fusion methods of polarization feature extraction and visual information of image to suppress the bubble influence on underwater target imaging are studied. The experimental results show that the target imaging under bubble group environment is influenced by many factors, and using polarimetric image fusion method can well weaken the bubble group’s influence on imaging, and improve the clarity of underwater target. In view of difficult problems about target identification existing in the high-density bubble group environment, we will use energy loss compensation or machine learning method to realize the target recognition and image restoration in the future.
-
Keywords:
- polarization information /
- bubble density /
- target identification /
- image fusion
[1] Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar
[2] Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar
[3] 张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)
Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)
[4] Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar
[5] Stramski D 1994 SPIE 2258 704
[6] Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar
[7] Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar
[8] Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar
[9] Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar
[10] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 物理学报 62 060704Google Scholar
Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar
[11] Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar
[12] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[13] Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar
[14] Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar
[15] 廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页
Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)
[16] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 物理学报 55 2257Google Scholar
Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar
[17] Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar
[18] Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136
[19] 杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar
Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar
[20] Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar
[21] 陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908
Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908
[22] 陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar
Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar
[23] 高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar
Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar
-
图 13 典型金属材质的变化对目标偏振成像的影响 (a)不同材质目标强度信息统计分析; (b)不同材质目标偏振度信息统计分析
Figure 13. Influence of changes of the typical metal material on the target polarization imaging: (a) Target’s strength information statistics and analysis of different material; (b) target’s polarization degree statistics and analysis of different material.
图 18 第一行为中等气泡密度强度图, 第二行为偏振信息融合处理结果图 (a)目标2; (b)目标3; (c)目标4; (d)目标5; (e)目标6
Figure 18. The first behavior indicates intensity figure of bubbles medium density, the second behavior indicates figure of polarization information fusion processing results: (a) Target 2; (b) target 3; (c) target 4; (d) target 5; (e) target 6.
表 1 水中气泡外界面多次反射、折射后的强度变化
Table 1. Intensity of the bubble external interface with multiple reflection and refraction.
入射角度/(°) 水中气泡外界面的光强 1 (A点) 2 (B点) 3 (C点) 4 (D点) 5 0.0201 0.9603 0.0193 3.8662 × 10–4 10 0.0201 0.9602 0.0193 3.9015 × 10–4 15 0.0202 0.9599 0.0194 4.0710 × 10–4 20 0.0207 0.9590 0.0198 4.6056 × 10–4 25 0.0220 0.9567 0.0207 6.0192 × 10-4 30 0.0251 0.9509 0.0230 9.5371 × 10-4 35 0.0328 0.9364 0.0287 0.0019 40 0.0542 0.8971 0.0436 0.0045 45 0.1342 0.7570 0.0888 0.0158 46 0.1761 0.6878 0.1062 0.0223 47 0.2466 0.5786 0.1262 0.0334 48 0.3945 0.3782 0.1353 0.0552 48.75(临界值) 0.9372 0.0042 0.0039 0.0037 表 2 水中气泡外界面多次反射、折射后的偏振度变化
Table 2. The DOP of the bubble external interface with multiple reflection and refraction.
入射角度/(°) 水中气泡外界面的偏振度/% 1 (A点) 2 (B点) 3 (C点) 4 (D点) 5 2.04 0.08 1.96 4.00 10 8.36 0.34 8.02 16.26 15 19.46 0.80 18.69 36.81 20 35.94 1.52 34.61 62.74 25 57.60 2.59 55.84 85.83 30 81.32 4.18 79.86 97.72 35 98.20 6.66 97.95 99.98 40 94.97 10.86 93.78 99.83 45 63.94 19.63 50.67 86.56 46 54.08 22.82 35.66 75.23 47 42.40 27.23 17.15 55.51 48 27.17 34.32 7.89 19.70 48.75(临界值) 1.81 50.25 48.88 47.50 表 3 不同成像分辨率条件下的图像评价指标
Table 3. Image evaluation index under the condition of different imaging resolution.
距离/m 信息熵 平均梯度 边缘强度 0.5 5.9263 1.3499 12.7868 0.6 5.9145 1.4647 14.2792 0.7 5.9311 1.4946 14.6517 0.8 6.0008 1.6703 16.5898 0.9 5.9563 1.7850 17.8742 1.0 5.9595 1.7225 17.2655 表 4 图像评价指标
Table 4. Image evaluation index.
材质类别 图像类别 信息熵 平均梯度 边缘强度 方差 目标1 原强度图 7.5541 2.6007 28.5980 4.9371 × 103 融合结果图 5.3631 14.9552 146.1138 5.6631 × 103 目标2 原强度图 6.0236 1.1077 11.9431 654.3071 融合结果图 5.6483 17.6877 169.1962 5.7606 × 103 目标3 原强度图 6.0648 4.1370 39.8161 508.8038 融合结果图 5.6336 16.3178 156.5486 5.8342 × 103 目标4 原强度图 6.0806 1.1309 12.2131 965.9536 融合结果图 5.7785 17.5954 169.1398 5.7043 × 103 目标5 原强度图 6.5571 1.4227 15.5275 1.0356 × 103 融合结果图 5.7211 15.0098 146.1177 5.8561 × 103 目标6 原强度图 6.2111 1.4299 15.6348 1.2907 × 103 融合结果图 5.5173 17.9909 174.8208 6.0343 × 103 -
[1] Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar
[2] Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar
[3] 张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)
Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)
[4] Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar
[5] Stramski D 1994 SPIE 2258 704
[6] Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar
[7] Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar
[8] Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar
[9] Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar
[10] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 物理学报 62 060704Google Scholar
Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar
[11] Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar
[12] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[13] Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar
[14] Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar
[15] 廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页
Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)
[16] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 物理学报 55 2257Google Scholar
Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar
[17] Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar
[18] Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136
[19] 杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar
Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar
[20] Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar
[21] 陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908
Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908
[22] 陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar
Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar
[23] 高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar
Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar
Catalog
Metrics
- Abstract views: 5648
- PDF Downloads: 111
- Cited By: 0