Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of Finnis-Sinclair potential of metal Nb and the influence of potential function form on the properties of material

Gao Jing-Yi Sun Jia-Xing Wang Xun Zhou Gang Wang Hao Liu Yan-Xia Xu Dong-Sheng

Citation:

Development of Finnis-Sinclair potential of metal Nb and the influence of potential function form on the properties of material

Gao Jing-Yi, Sun Jia-Xing, Wang Xun, Zhou Gang, Wang Hao, Liu Yan-Xia, Xu Dong-Sheng
PDF
HTML
Get Citation
  • Researchers’ work on computational materials is often hampered by the lack of suitable intera tomic potentials. In this paper, under the framework of Finnis-Sinclair (FS) potentials, the process of fitting, testing and correction of interatomic potential is given in detail by developing the FS potential for metal Nb. First, the relationship between the interatomic potential and the macroscopic properties of the material is established. Then, the Finnis-Sinclair potential of metal Nb is fitted by reproducing the experimental data, such as the cohesive energy, bulk modulus, surface energy, vacancy formation energy and equilibrium lattice constant, and the fitting mean square error is less than 10–7. In order to test the interatomic potential, the elastic constant, shear modulus and Cauchy pressure of metal Nb are calculated by the constructed interatomic potential. In addition, how the form of the interatomic potential function affects the interstitial performance is discussed, and the constructed interatomic potential is modified according to the results of density functional theory (DFT) of the interstitial formation energy. The treatment of cutoff distance is also discussed. In the paper, the results are as follows. 1) The original form of FS potential is not suitable for extending the atomic interaction to the third nearest neighbor. Through analysis and test, it is found that when the modified electron density function is in the form of the fourth power and the form of the pair potential function is in the form of the sixth power polynomial, the interatomic potential can better describe the interatomic interaction; 2) The result of interstitial formation energy is taken as the target value to modify the behavior of the pair potential function in the near distance, and the modified interatomic potential gives the interstitial formation energy close to the result of DFT. When the interstitial energy calculated by the interatomic potential is larger than the target value, the pair potential curve of near distance will be softened by the superposition of a polynomial term, otherwise, the pair potential curve will be stiffened; 3) When the physical quantity under equilibrium state is used as the fitting data, the fitted potential parameters and the elastic constant results will not be affected, while adjusting the curve form of the potential function, as long as none of the function value, the slope and the curvature of the function curve is changed at each neighbor position. The magnitude of interstitial energy will be affected by changing the shape of the curve that is less than the first neighbor range; 4) Under the cutoff strategy in this paper, changing the cutoff distance has almost no influence on the calculated results of potential parameters or crystal properties, but has a slight influence on the mean square error of the fitting results. The results of this paper provide some information for the construction of interatomic potentials database, and lay a foundation for constructing the Nb-related interatomic potential of alloy. And it also provides a method and basis for developing and improving the quality of interatomic potential.
      Corresponding author: Liu Yan-Xia, ldlyx@163.com
    • Funds: Project supported by the National Key Research & Development Program of China (Grant No. 2016YFB0701304)
    [1]

    Fellinger M R, Park H, Wilkins J W 2010 Phys. Rev. B 81 144119Google Scholar

    [2]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45Google Scholar

    [3]

    Liao X C, Gong H F, Chen Y C, Liu G D, Liu T, Shu R, Liu Z X, Hu W Y, Gao F, Jiang C, Deng H Q 2020 J. Nucl. Mater. 541 152421Google Scholar

    [4]

    Johnson R A, Oh D J 1989 J. Mater. Res. 4 1195Google Scholar

    [5]

    Ackland G J 2012 J. Phys. Conf. Ser. 402 012001Google Scholar

    [6]

    Cheng C, Ma Y L, Bao Q L, Wang X, Sun J X, Zhou G, Wang H, Liu Y X, Xu D S 2020 Comput. Mater. Sci. 173 109432Google Scholar

    [7]

    Pasianot R., Savino E. J. 1992 Phys. Rev. B 45 12704Google Scholar

    [8]

    Ackland G J 1992 Phil. Mag. A 66 917Google Scholar

    [9]

    Kim Y M, Lee B J, Baskes M I 2006 Phys. Rev. B 74 014101Google Scholar

    [10]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154102Google Scholar

    [11]

    Farkas D, Jones C 1996 Mater. Sci. Eng. 4 23

    [12]

    Jones C, Farkas D 1996 Comput. Mater. Sci. 6 231Google Scholar

    [13]

    Li Y J, Wu A P, Li Q, Zhao Y, Zhu R C, Wang G Q 2019 Trans. Nonferrous Met. Soc. China 29 1873Google Scholar

    [14]

    Smirnova D E, Starikov S V 2017 Comput. Mater. Sci. 129 259Google Scholar

    [15]

    Ghosh G, Olson G B 2007 Acta Mater. 55 3281Google Scholar

    [16]

    Daw M S, Baskes M I, 1983 Phys. Rev. Lett. 50 1285Google Scholar

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B Condens. Matter 29 6443Google Scholar

    [18]

    Yang C M, Qi L 2019 Comput. Mater. Sci. 161 351Google Scholar

    [19]

    Hu W Y, Zhang B W, Shu X L, Huang 1999 J. Alloys Compd. 289 159

    [20]

    Li J H, Dai X D, Liang S H, Tai K P, Kong Y, Liu B X 2008 Phys. Rep. 455 1Google Scholar

    [21]

    Ackland G J, Thetford R 1987 Phil. Mag. A 56 15Google Scholar

    [22]

    Rebonato R, Welch D O, Hatcher R D, Bilello J C 1987 Phil. Mag. A 55 655Google Scholar

    [23]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102Google Scholar

    [24]

    Nguyen-Manh D, Horsfield A P, Dudarev S L 2006 Phys. Rev. B 73 020101Google Scholar

    [25]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107Google Scholar

  • 图 1  bcc结构6种间隙构型

    Figure 1.  Six interstitial configurations of bcc structure

    图 2  势函数曲线 (a) 电子密度曲线; (b) 对势曲线; (c) 有效对势曲线

    Figure 2.  Potential function curve: (a) Electron density curve; (b) potential curve; (c) effective pair potential curve.

    表 1  截断距离内的各间隙原子的距离及等价原子数

    Table 1.  Distance and equivalent atomic number of each atom withinthe cutoff distance from the interstitial atom.

    间隙构型距离及等价原子数
    挤列子距离$\dfrac{ {\sqrt 3 } }{ {4} }{a }$$\dfrac{{\sqrt 11 }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{19}}} }}{{4}}{\rm{a}}$$\dfrac{{\sqrt {{\rm{27}}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{35}}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{43}}} }}{{4}}{a}$
    原子数2668126
    八面体距离$\dfrac{1}{2}{a}$$\dfrac{{\sqrt 2 }}{2}{a}$$\dfrac{{\sqrt {\rm{5}} }}{2}{a}$$\dfrac{{\sqrt 6 }}{2}{a}$$\dfrac{3}{2}{a}$
    原子数248810
    四面体距离$\dfrac{{\sqrt {\rm{5}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{13}}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{21}}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{29}}} }}{{4}}{a}$$\dfrac{{\sqrt {{\rm{37}}} }}{{4}}{a}$
    原子数448124
    DownLoad: CSV

    表 2  拟合用金属Nb的实验数据及计算结果

    Table 2.  Experimental and calculation data of metal Nb for fitting interatomic potential.

    数值aEc/eVB/(1011 Pa)Eγ100/
    (mJ·m–2)
    $E_{\rm{v}}^{\rm{f}}$/eV
    实验值3.30087.571.71020462.64
    本文计
    算值
    3.30087.571.71020502.64
    DownLoad: CSV

    表 3  金属Nb的FS势参数及拟合均方差

    Table 3.  FS potential parameters of metal Nb and fitting mean square error.

    均方差/10–8c0c1c2A/eV
    无修
    正项
    6.634470.262198–0.1389740.01844610.636219
    带修
    正项
    6.634470.262198–0.1389740.01844610.636219
    DownLoad: CSV

    表 4  金属Nb的弹性常数(单位为1011 Pa)

    Table 4.  Elastic constants of metal Nb (in 1011 Pa)

    C44C11C12$C' $Pc
    实验值[2]0.2812.4661.3320.5460.5255
    本文结果0.5672.3431.3930.4750.4134
    DownLoad: CSV

    表 5  金属Nb的间隙形成能

    Table 5.  Interstitial formation energy of metal Nb.

    FS[21]FS(87)[22]FS(87)未驰豫DFT[24]DFT[25]本文无修正项本文有修正项
    Cutoffc4.24.24.25.312615.31261
    d3.9153543.9153543.9153545.07095.0709
    $ \left\langle {111} \right\rangle $ crow4.8574.109.0375.2545.25515.4876.977
    $ \left\langle {111} \right\rangle $ dum4.7956.6105.2535.20310.7497.775
    $ \left\langle {110} \right\rangle $ dum4.4823.995.9305.5975.6847.1484.425
    $ \left\langle {100} \right\rangle $ dum4.8214.138.3855.9496.00513.8447.616
    Tetrahedral4.266.8935.7585.73310.6596.371
    Octahedral4.236.8506.0606.00911.0696.659
    DownLoad: CSV

    表 6  不同函数形式的势参数

    Table 6.  Potential parameters of different functional forms.

    函数形式(35), (36)式(35), (6)式(5), (6)式(5), (32), (33)式(5), (32), (34)式
    c0–20.2072–14.05430.2621980.2621980.262198
    c115.468311.0332–0.138974–0.138974–0.138974
    c2–2.81702–2.043510.01844610.01844610.0184461
    A1.287100.6369660.6362190.6362190.636219
    DownLoad: CSV

    表 7  不同函数形式的各物理量计算结果

    Table 7.  Calculation results of each physical quantity in different function forms.

    函数形式(35), (36)式(35), (6)式(5), (6)式(5), (32), (33)式(5), (32), (34)式
    C118.198542.053662.343022.343022.34302
    C12–2.885931.538171.393491.393491.39349
    $C' $5.542350.2577450.4747670.4747670.474767
    C44–3.207761.213740.566640.566640.56664
    Pc0.1609150.1622170.4134240.4134240.413424
    Octahedral–75.925614.543211.06937.99096.65925
    Tetrahedral–80.061613.922310.65937.537376.37076
    $ \left\langle {111} \right\rangle $ crow–89.914020.932015.487111.09926.97688
    $ \left\langle {100} \right\rangle $ dum–947.48615.225013.84399.570217.61644
    $ \left\langle {110} \right\rangle $ dum–954.0525.001807.147504.563484.42502
    $ \left\langle {111} \right\rangle $ dum72.300417.923910.74908.124067.77466
    DownLoad: CSV

    表 8  不同对势截断距离下的各物理量计算结果

    Table 8.  Calculation results of each physical quantity under different pair potential cutoff distance.

    截断距离x = 0.55x = 0.70x = 0.80
    均方差1.9669 × 10–71.3307 × 10–76.6345 × 10–8
    B1.067411.067421.06742
    ${\gamma _{100}}$0.1281590.128080.12808
    $E_{\rm{v}}^{\rm{f}}$2.639982.639992.63999
    ${E_C}$7.577.577.57
    C112.335512.340812.34302
    C121.397241.39461.39349
    $C' $0.4691370.4731050.474767
    C440.5703920.5677490.56664
    Pc0.4134240.4134240.413424
    Octahedral6.934216.760736.65925
    Tetrahedral6.625076.463656.37076
    $ \left\langle {111} \right\rangle $ crow7.451717.155946.97688
    $ \left\langle {100} \right\rangle $ dum8.308977.900987.61644
    $ \left\langle {110} \right\rangle $ dum4.808784.593694.42502
    $ \left\langle {111} \right\rangle $ dum8.067177.897047.77466
    DownLoad: CSV

    表 9  不同电子密度截断距离下的各物理量计算结果

    Table 9.  Calculation results of each physical quantity under different electron density cutoff distance.

    截断距离y = 0.45y = 0.50y = 0.60
    均方差1.57065 × 10–76.6345 × 10–81.08929 × 10–10
    B1.067421.067421.06742
    ${\gamma _{100}}$0.1281110.128080.127726
    $E_{\rm{v}}^{\rm{f}}$2.639992.639992.64000
    ${E_{\rm{C}}}$7.577.577.57
    C112.353412.343022.32299
    C121.388301.393491.40351
    $c'$0.4825550.4747670.45974
    C440.5335680.566640.627336
    Pc0.4273660.4134240.388087
    Octahedral6.426996.659257.07134
    Tetrahedral6.149256.370766.76314
    $ \left\langle {111} \right\rangle $ crow6.632306.976887.59196
    $ \left\langle {100} \right\rangle $ dum7.508747.616447.80542
    $ \left\langle {110} \right\rangle $ dum4.530494.425024.23158
    $111 $ dum7.288967.774669.07468
    DownLoad: CSV
  • [1]

    Fellinger M R, Park H, Wilkins J W 2010 Phys. Rev. B 81 144119Google Scholar

    [2]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45Google Scholar

    [3]

    Liao X C, Gong H F, Chen Y C, Liu G D, Liu T, Shu R, Liu Z X, Hu W Y, Gao F, Jiang C, Deng H Q 2020 J. Nucl. Mater. 541 152421Google Scholar

    [4]

    Johnson R A, Oh D J 1989 J. Mater. Res. 4 1195Google Scholar

    [5]

    Ackland G J 2012 J. Phys. Conf. Ser. 402 012001Google Scholar

    [6]

    Cheng C, Ma Y L, Bao Q L, Wang X, Sun J X, Zhou G, Wang H, Liu Y X, Xu D S 2020 Comput. Mater. Sci. 173 109432Google Scholar

    [7]

    Pasianot R., Savino E. J. 1992 Phys. Rev. B 45 12704Google Scholar

    [8]

    Ackland G J 1992 Phil. Mag. A 66 917Google Scholar

    [9]

    Kim Y M, Lee B J, Baskes M I 2006 Phys. Rev. B 74 014101Google Scholar

    [10]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154102Google Scholar

    [11]

    Farkas D, Jones C 1996 Mater. Sci. Eng. 4 23

    [12]

    Jones C, Farkas D 1996 Comput. Mater. Sci. 6 231Google Scholar

    [13]

    Li Y J, Wu A P, Li Q, Zhao Y, Zhu R C, Wang G Q 2019 Trans. Nonferrous Met. Soc. China 29 1873Google Scholar

    [14]

    Smirnova D E, Starikov S V 2017 Comput. Mater. Sci. 129 259Google Scholar

    [15]

    Ghosh G, Olson G B 2007 Acta Mater. 55 3281Google Scholar

    [16]

    Daw M S, Baskes M I, 1983 Phys. Rev. Lett. 50 1285Google Scholar

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B Condens. Matter 29 6443Google Scholar

    [18]

    Yang C M, Qi L 2019 Comput. Mater. Sci. 161 351Google Scholar

    [19]

    Hu W Y, Zhang B W, Shu X L, Huang 1999 J. Alloys Compd. 289 159

    [20]

    Li J H, Dai X D, Liang S H, Tai K P, Kong Y, Liu B X 2008 Phys. Rep. 455 1Google Scholar

    [21]

    Ackland G J, Thetford R 1987 Phil. Mag. A 56 15Google Scholar

    [22]

    Rebonato R, Welch D O, Hatcher R D, Bilello J C 1987 Phil. Mag. A 55 655Google Scholar

    [23]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102Google Scholar

    [24]

    Nguyen-Manh D, Horsfield A P, Dudarev S L 2006 Phys. Rev. B 73 020101Google Scholar

    [25]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107Google Scholar

  • [1] Tian Xiao-Lin,  Zhao Yu-Hong,  Tian Jin-Zhong,  Hou Hua. Effects of interatomic potential on precipitation sequences of medium Al concentration in Ni75AlxV25-x alloys. Acta Physica Sinica, 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [2] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [3] Liu Yan, Jia Cheng, Guo Fu-Ming, Yang Yu-Jun. Influence of atomic potential on the generation of high harmonic generation from the atoms irradiated by mid-infrared laser pulses. Acta Physica Sinica, 2016, 65(3): 033201. doi: 10.7498/aps.65.033201
    [4] Sun Su-Rong, Wang Hai-Xing. A comparison of interatomic potentials for noble gases. Acta Physica Sinica, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [5] Chang Long, Jian Yong-Jun. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential. Acta Physica Sinica, 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [6] Rao Jian-Ping, Ouyang Chu-Ying, Lei Min-Sheng, Jiang Feng-Yi. First principles investigation of interaction between interstitials H atom and Nb metal. Acta Physica Sinica, 2012, 61(4): 047105. doi: 10.7498/aps.61.047105
    [7] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [8] Wang Zhao-Ke, Wu Yong-Quan, Shen Tong, Liu Yi-Hu, Jiang Guo-Chang. Long-range Finnis-Sinclair potential for Zn-Mg alloy. Acta Physica Sinica, 2011, 60(8): 086105. doi: 10.7498/aps.60.086105
    [9] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [10] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [11] Hu Zhi-Gang, Liu Yi-Hu, Wu Yong-Quan, Shen Tong, Wang Zhao-Ke. Long-range Finnis-Sinclair potential for molecular dynamics simulation of α-Al2O3. Acta Physica Sinica, 2009, 58(11): 7838-7844. doi: 10.7498/aps.58.7838
    [12] Liu Yan-Xia, Wang Xun, Ma Yong-Qing, Zhang Cheng-Hua. The construction and application of the many-body potential for the Fe-Cr-V-Ni-Si-C system multi-component alloy. Acta Physica Sinica, 2008, 57(1): 358-363. doi: 10.7498/aps.57.358
    [13] Jia Hong-Xiang, Meng Xu-Jun. An average-atom model with potential-well and mixed form of exchange potential. Acta Physica Sinica, 2005, 54(1): 70-77. doi: 10.7498/aps.54.70
    [14] SUN JIU-XUN. EXACTLY SOLVABLE POTENTIAL WITH FOUR PARAMETERS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [15] FENG SHAO-XIN, JIN QING-HUA, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG. EMPIRICAL PARAMETERIZATION OF INTER-IONIC POTENTIALS FOR ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [16] SUN JIU-XUN, ZHANG LI-YUAN. TWO EXACTLY SOLVABLE POTENTIALS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1996, 45(12): 1953-1959. doi: 10.7498/aps.45.1953
    [17] YANG DE-QING. A NEW METHOD OF CALCULATING ATOMIC RADIUS AND WORK FUNCTION OF METALS. Acta Physica Sinica, 1994, 43(9): 1507-1516. doi: 10.7498/aps.43.1507
    [18] CHEN JIN-YU, DING E-JIANG. WETTING TRANSITIONS OF A SIMPLE FLUID CONFINED BETWEEN DIFFERENT PARALLEL WALLS. Acta Physica Sinica, 1993, 42(8): 1278-1289. doi: 10.7498/aps.42.1278
    [19] LI SHU-SHAN, LIN GUANG-HAI. CALCULATION OF ELASTIC CONSTANTS OF SIMPLE METALS BY PSEUDOPOTENTIAL METHOD. Acta Physica Sinica, 1982, 31(1): 38-49. doi: 10.7498/aps.31.38
    [20] C. C. YANG. . Acta Physica Sinica, 1966, 22(3): 294-303. doi: 10.7498/aps.22.294
Metrics
  • Abstract views:  6624
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2020
  • Accepted Date:  27 January 2021
  • Available Online:  29 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回