-
By numerically solving the time dependent Schrodinger equation, the harmonic spectra generated from the atoms are obtained. The atomic potentials are modeled by a short-range potential and a long-range soft Coulomb potential, respectively. It is found that using the same laser parameters, the intensity of harmonic spectrum from the short-range atom is lower than the one from the long-range atom. However, in a high energy (near the cutoff) region of harmonic spectra, their conversion efficiencies are almost the same. The differences in emission intensity among harmonic spectra decrease as the harmonic energy increases. We calculate the time dependent probabilities of the ground state and ionization. It is found that the ionization probability of the long-range potential is larger than that of the short-range potential. There is no large difference in ground probability between the potentials of two models. The high harmonic generation is a stimulated process, and its intensity is proportional to the product between the amplitude for ground state and the amplitude of the continuum state. Thus the product of the long-range atom is larger than that of the short-range atom, and the emission spectrum presents a similar character. In order to analyze the mechanism of the intensity difference between two models, we perform a time-frequency analysis of the harmonic emission spectrum. The analysis is selected of the wavelet of the time dependent dipole moment. From the emission profile of the harmonic analysis, we find that the harmonic generated from long orbit plays a dominant role for the short-range atom. The amplitudes of electric field are large for the long orbit harmonic emission, thus the ionization mechanism of the atom is the tunnel ionization. For the short orbit, the instant field for the ionization is weak. Thus the short orbit plays a small role in the harmonic emission from the short-range atom. Using this feature of the short-range atom, we generate an isolated attosecond pulse. The short model atom is widely used to study the ionization of the plasma. Thus this work will contribute to the research on the high-order harmonic generation from the plasma.
-
Keywords:
- high harmonic generation /
- attosecond pulse /
- short-range potential
[1] Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172
[2] Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545
[3] Paul P M, Toma E S, Breger P 2001 Science 292 1689
[4] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117
[5] Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415
[6] Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008 Science 320 1478
[7] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203
[8] Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194
[9] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
[10] 10 Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S 2006 Science 314 443
[11] Corkum P B, Krausz F 2007 Nature Phys. 3 381
[12] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[13] Popmintchev T, Chen M C, Popmintchev D, Kapteyn C 2012 Science 336 1827
[14] Harris G M 1962 Phys. Rev. 125 1131
[15] Faria C F M, Kopold R, Becker W, Rost J M 2002 Phys. Rev. A 65 023404
[16] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]
[17] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202
[18] Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 05319
[19] Wei S S, Li s Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418
[20] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X 2007 Chin. Phys. Lett. 24 1537
[21] Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L, Yang Y J 2014 Chin. Phys. B 23 053201
[22] Su Q, Eberly J H 1991 Phys. Rev. A 44 5997
[23] Puckhov A, Gordienko S, Baeva T 2003 Phys. Rev. Lett. 91 173003
-
[1] Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172
[2] Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545
[3] Paul P M, Toma E S, Breger P 2001 Science 292 1689
[4] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117
[5] Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415
[6] Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008 Science 320 1478
[7] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203
[8] Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194
[9] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
[10] 10 Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S 2006 Science 314 443
[11] Corkum P B, Krausz F 2007 Nature Phys. 3 381
[12] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[13] Popmintchev T, Chen M C, Popmintchev D, Kapteyn C 2012 Science 336 1827
[14] Harris G M 1962 Phys. Rev. 125 1131
[15] Faria C F M, Kopold R, Becker W, Rost J M 2002 Phys. Rev. A 65 023404
[16] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]
[17] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202
[18] Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 05319
[19] Wei S S, Li s Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418
[20] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X 2007 Chin. Phys. Lett. 24 1537
[21] Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L, Yang Y J 2014 Chin. Phys. B 23 053201
[22] Su Q, Eberly J H 1991 Phys. Rev. A 44 5997
[23] Puckhov A, Gordienko S, Baeva T 2003 Phys. Rev. Lett. 91 173003
Catalog
Metrics
- Abstract views: 5710
- PDF Downloads: 206
- Cited By: 0