Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time delay concealment and unpredictability enhancement of nanolasers under external cavity regulation

Jiang Pei Zhou Pei Li Nian-Qiang Mu Peng-Hua Li Xiao-Feng

Citation:

Time delay concealment and unpredictability enhancement of nanolasers under external cavity regulation

Jiang Pei, Zhou Pei, Li Nian-Qiang, Mu Peng-Hua, Li Xiao-Feng
PDF
HTML
Get Citation
  • As an important optical element of the optical integration in the future, nanolasers has been a research hotspot in recent years, and the corresponding structural engineering and output characteristics have been widely investigated. However, the nonlinear dynamical performances of nanolasers are rarely reported. Only some preliminary analyses of the dynamic behavior under the optical feedback, optical injection and mutual injection can be found. Some researches pointed out the future prospect of nanolasers, however, some chaos-based applications have not been explored. Therefore, we numerically investigate chaos dynamics in a nanolaser subjected to optical feedback and in another nanolaser subjected to chaotic injection from the former structure by using single mode rate equation, which includes the Purcell cavity-enhanced spontaneous emission factor F and spontaneous emission coupling factor β. The F denotes the ratio of the spontaneous emission rate into the cavity mode to the total spontaneous emission rate in the bulk medium in the absence of a cavity and β represents the fraction of spontaneous emitted photons which are coupled into cavity mode. Specifically, chaos time delay signature (TDS) and unpredictability are evaluated by the peak size of autocorrelation function (ACF) and permutation entropy (PE) respectively. Such kinds of calculations have the advantage of fast operation speed and anti-noise robustness. The results show that the increasing of bias current and the decreasing of gain saturation factor ε, F and β are beneficial to improving the unpredictability and suppressing TDS because the weak damping of the relaxation oscillation leads to strong oscillation. Large linewidth enhancement factor α will increase the number of laser oscillating modes, sideband modes, the spectral components, and enhance the dispersion effect, which will also weaken the information about outer cavity and improve the complexity of chaos. In addition, the above-mentioned chaos properties can be enhanced by injecting the chaos output from a nanolaser subjected to optical feedback into another (slave) nanolaser, which is due to the nonlinear interaction between the driving chaotic signal and the internal electric field of the slave nanolaser. Finally, two-dimensional maps depicting high unpredictability and TDS concealment in the parameter space of the frequency detuning and the injection strength are obtained. It can be found that unpredictability degree can be enhanced by choosing high detuning frequency and intermediate injection strength in the non-injection locking area. The numerical results pave the way for generating the high-quality chaotic sources on a chip or the photonic integrated circuits based on novel semiconductor nanolaser and its related applications.
      Corresponding author: Li Nian-Qiang, wan_103301@163.com ; Li Xiao-Feng, xfli@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004135, 62001317, 61875143), the Natural Science Research Project of Jiangsu Higher Education Institutions, China (Grant No. 20KJA416001), the Startup Funding of Soochow University, China (Grant No. Q415900119), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180042), and the Superior Discipline Construction Project of Jiangsu Higher Education Institutions, China
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [2]

    Sciamanna M, Shore K A 2015 Nat. Photonics 9 151Google Scholar

    [3]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728Google Scholar

    [4]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634Google Scholar

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991Google Scholar

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [7]

    Locquet A, Kim B, Choi D, Li N Q, Citrin D S 2017 Phy. Rev. A 95 023801Google Scholar

    [8]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [9]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515Google Scholar

    [10]

    Kanno K, Uchida A, Bunsen M 2016 Phy. Rev. E 93 032206Google Scholar

    [11]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y, Mu P H 2014 IEEE J. Quantum Electron. 50 766Google Scholar

    [12]

    Keller K, Sinn M 2010 Phy. D 239 997Google Scholar

    [13]

    Bandt C, Pompe B 2002 Phy. Rev. Lett. 88 174102Google Scholar

    [14]

    Xiang S Y, Pan W, Yan L S, Luo B, Zou X H, Jiang N, Wen K H 2011 Opt. Lett. 36 310Google Scholar

    [15]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 J. Lightwave Technol. 29 2173Google Scholar

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Li N Q 2011 IEEE J. Quantum Electron. 47 1354Google Scholar

    [17]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069Google Scholar

    [18]

    Xiang S Y, Pan W, Li N Q, Zhang L Y, Zhu H N 2013 Opt. Commun. 311 294Google Scholar

    [19]

    Guo X X, Xiang S Y, Zhang Y H, Wen A J, Hao Y 2018 IEEE J. Quantum Electron. 54 2000308Google Scholar

    [20]

    Zhang H, Xiang S Y, Zhang Y H, Guo X X 2017 Appl. Opt. 56 6728Google Scholar

    [21]

    Li N Q, Pan W, Locquet A, Citrin D S 2015 Opt. Lett. 40 4416Google Scholar

    [22]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. Laser Technol. 53 45Google Scholar

    [23]

    Hill M T, Oei Y S, Smalbrugge B, Zhu Y C, Vries T D, Veldhoven P J V, Otten F W M V, Eijkemans T J, Turkiewicz J P, Waardt H D, Geluk E J, Kwon S H, Lee Y H, Nötzel R, Smit M K 2007 Nat. Photonics 1 589Google Scholar

    [24]

    Lau E K, Lakhani A, Tucker R S, Wu M C 2009 Opt. Express 17 7790Google Scholar

    [25]

    Sattar Z A, Shore K A 2015 J. Lightwave Technol. 33 3028Google Scholar

    [26]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800106Google Scholar

    [27]

    Sattar Z A, Shore K A 2016 IEEE J. Quantum Electron. 52 1100108Google Scholar

    [28]

    Sattar Z A, Kamel N A, Shore K A 2016 IEEE J. Quantum Electron. 52 1200108Google Scholar

    [29]

    Han H, Shore K A 2018 IET Optoelectron. 12 25Google Scholar

    [30]

    Han H, Shore K A 2016 IEEE J. Quantum Electron. 52 2000306Google Scholar

    [31]

    Elsonbaty A, Hegazy S F, Obayya S S A 2018 Opt. Laser. Eng. 107 342Google Scholar

    [32]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quantum Electron. 55 2000407Google Scholar

    [33]

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2020 Opt. Express 28 26421Google Scholar

    [34]

    Chao M, Wang D M, Wang L S, Sun Y C, Han H, Guo Y Y, Jia Z W, Wang Y C, Wang A B 2020 Opt. Commun. 456 124702Google Scholar

    [35]

    阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203Google Scholar

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203Google Scholar

    [36]

    Zhou P, Fang Q, Li N Q 2020 Opt. Lett. 45 399Google Scholar

    [37]

    苏斌斌, 陈建军, 吴正茂, 夏光琼 2017 物理学报 66 244206Google Scholar

    Su B B, Chen J J, Wu Z M, Xia G Q 2017 Acta. Phys. Sin. 66 244206Google Scholar

    [38]

    Uchida A 2012 Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Berlin: Wiley) p195

  • 图 1  (a1), (a2)光反馈下的纳米激光器时序; (b1), (b2) ACF曲线; (c1), (c2) PE曲线. 反馈耦合因子: (a1)—(c1)$f = 0.02$; (a2)—(c2)$ f = 0.06$

    Figure 1.  (a1), (a2) Time series; (b1), (b2) ACF curve; (c1), (c2) PE curve of a nanolaser under optical feedback. The feedback coupling fraction: (a1)–(c1) $ f = 0.02 $; (a2)–(c2) $ f = 0.06 $.

    图 2  光反馈纳米激光器 (a) TDS与 (b) H[P ]随着$ \alpha $, $ \varepsilon $的变化

    Figure 2.  (a) TDS and (b) H[P ] of a nanolaser subjected to optical feedback as functions of $ \alpha $, $ \varepsilon $.

    图 3  光反馈纳米激光器 (a) TDS与 (b) H[P] 随着$ F $的变化

    Figure 3.  (a) TDS and (b) H[P] of a nanolaser subjected to optical feedback as functions of $ F$.

    图 4  光反馈纳米激光器 (a) TDS与 (b) H[P] 随着偏置电流的变化

    Figure 4.  (a) TDS and (b) H[P] of a nanolaser subjected to optical feedback as functions of the bias current.

    图 5  混沌光注入下从纳米激光器的 (a1), (a2)时序; (b1), (b2)ACF曲线; (c1), (c2) PE曲线. 注入强度(a1)—(c1)$ {k_{\rm{r}}} = 100\;{\rm{n}}{{\rm{s}}^{ - 1}} $; (a2)—(c2)$ {k_{\rm{r}}} = 200\;{\rm{n}}{{\rm{s}}^{ - 1}} $; $ \Delta f = 25\;{\rm{GHz}} $

    Figure 5.  (a1), (a2) Time series; (b1), (b2) ACF curve; (c1), (c2) PE curve of the slave nanolaser under chaotic optical injection. The injection strength (a1)–(c1) $ {k_{\rm{r}}} = 100\;{\rm{n}}{{\rm{s}}^{ - 1}} $; (a2)–(c2) $ {k_{\rm{r}}} = 200\;{\rm{n}}{{\rm{s}}^{ - 1}} $;$ \Delta f = 25\;{\rm{GHz}} $.

    图 6  在不同F, β及偏置电流下, 从纳米激光器混沌输出的H[P ]随失谐频率及注入强度变化的二维映射 (a1)—(a3)${I_{{\rm{dc}}}} = $$ 2{I_{{\rm{th}}}}$; (b1)—(b3)$ {I_{{\rm{dc}}}} = 4{I_{{\rm{th}}}} $. (a1), (b1)F = 14, β = 0.05; (a2), (b2)F = 14, β = 0.1; (a3), (b3)F = 30, β = 0.1

    Figure 6.  Two-dimensional maps of H[P ] in the parameter space of the frequency detuning and injection strength under different values of F, β and injection current for the slave nanolaser: (a1)–(a3) $ {I_{{\rm{dc}}}} = 2{I_{{\rm{th}}}} $; (b1)–(b3) $ {I_{{\rm{dc}}}} = 4{I_{{\rm{th}}}} $. (a1), (b1) F = 14, β = 0.05; (a2), (b2) F = 14, β = 0.1; (a3), (b3) F = 30, β = 0.1.

    图 7  在不同线宽增强因子下, 从纳米激光器混沌输出的 (a1)—(a3)H[P ]及(b1)—(b3)时延特征峰值随失谐频率及注入强度变化的二维映射. (a1), (b1)$ \alpha=4 $; (a2), (b2)$ \alpha=5 $; (a3), (b3)$ \alpha=6 $

    Figure 7.  Two-dimensional maps of (a1)–(a3) H[P ] and (b1)–(b3) TDS in the parameter space of the frequency detuning and injection strength under different values of the linewidth enhancement factor for the slave nanolaser. (a1), (b1) $ \alpha=4 $; (a2), (b2) $ \alpha=5 $; (a3), (b3) $ \alpha=6 $.

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [2]

    Sciamanna M, Shore K A 2015 Nat. Photonics 9 151Google Scholar

    [3]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728Google Scholar

    [4]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634Google Scholar

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991Google Scholar

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [7]

    Locquet A, Kim B, Choi D, Li N Q, Citrin D S 2017 Phy. Rev. A 95 023801Google Scholar

    [8]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [9]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515Google Scholar

    [10]

    Kanno K, Uchida A, Bunsen M 2016 Phy. Rev. E 93 032206Google Scholar

    [11]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y, Mu P H 2014 IEEE J. Quantum Electron. 50 766Google Scholar

    [12]

    Keller K, Sinn M 2010 Phy. D 239 997Google Scholar

    [13]

    Bandt C, Pompe B 2002 Phy. Rev. Lett. 88 174102Google Scholar

    [14]

    Xiang S Y, Pan W, Yan L S, Luo B, Zou X H, Jiang N, Wen K H 2011 Opt. Lett. 36 310Google Scholar

    [15]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 J. Lightwave Technol. 29 2173Google Scholar

    [16]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Li N Q 2011 IEEE J. Quantum Electron. 47 1354Google Scholar

    [17]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069Google Scholar

    [18]

    Xiang S Y, Pan W, Li N Q, Zhang L Y, Zhu H N 2013 Opt. Commun. 311 294Google Scholar

    [19]

    Guo X X, Xiang S Y, Zhang Y H, Wen A J, Hao Y 2018 IEEE J. Quantum Electron. 54 2000308Google Scholar

    [20]

    Zhang H, Xiang S Y, Zhang Y H, Guo X X 2017 Appl. Opt. 56 6728Google Scholar

    [21]

    Li N Q, Pan W, Locquet A, Citrin D S 2015 Opt. Lett. 40 4416Google Scholar

    [22]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. Laser Technol. 53 45Google Scholar

    [23]

    Hill M T, Oei Y S, Smalbrugge B, Zhu Y C, Vries T D, Veldhoven P J V, Otten F W M V, Eijkemans T J, Turkiewicz J P, Waardt H D, Geluk E J, Kwon S H, Lee Y H, Nötzel R, Smit M K 2007 Nat. Photonics 1 589Google Scholar

    [24]

    Lau E K, Lakhani A, Tucker R S, Wu M C 2009 Opt. Express 17 7790Google Scholar

    [25]

    Sattar Z A, Shore K A 2015 J. Lightwave Technol. 33 3028Google Scholar

    [26]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800106Google Scholar

    [27]

    Sattar Z A, Shore K A 2016 IEEE J. Quantum Electron. 52 1100108Google Scholar

    [28]

    Sattar Z A, Kamel N A, Shore K A 2016 IEEE J. Quantum Electron. 52 1200108Google Scholar

    [29]

    Han H, Shore K A 2018 IET Optoelectron. 12 25Google Scholar

    [30]

    Han H, Shore K A 2016 IEEE J. Quantum Electron. 52 2000306Google Scholar

    [31]

    Elsonbaty A, Hegazy S F, Obayya S S A 2018 Opt. Laser. Eng. 107 342Google Scholar

    [32]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quantum Electron. 55 2000407Google Scholar

    [33]

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2020 Opt. Express 28 26421Google Scholar

    [34]

    Chao M, Wang D M, Wang L S, Sun Y C, Han H, Guo Y Y, Jia Z W, Wang Y C, Wang A B 2020 Opt. Commun. 456 124702Google Scholar

    [35]

    阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203Google Scholar

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203Google Scholar

    [36]

    Zhou P, Fang Q, Li N Q 2020 Opt. Lett. 45 399Google Scholar

    [37]

    苏斌斌, 陈建军, 吴正茂, 夏光琼 2017 物理学报 66 244206Google Scholar

    Su B B, Chen J J, Wu Z M, Xia G Q 2017 Acta. Phys. Sin. 66 244206Google Scholar

    [38]

    Uchida A 2012 Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Berlin: Wiley) p195

  • [1] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers. Acta Physica Sinica, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [3] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [4] Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [5] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [6] Wang Xi, Wang Yu-Hong, Li Xing-Yuan, Miao Miao. Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay. Acta Physica Sinica, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [7] An Bao-Ran, Liu Guo-Ping. Predictive controller for networked multi-agent systems with communication delay and packet loss. Acta Physica Sinica, 2014, 63(14): 140203. doi: 10.7498/aps.63.140203
    [8] Ji Liang-Hao, Liao Xiao-Feng. Consensus analysis of multi-agent system with multiple time delays. Acta Physica Sinica, 2012, 61(15): 150202. doi: 10.7498/aps.61.150202
    [9] Ji Liang-Hao, Liao Xiao-Feng, Liu Qun. Group consensus analysis of multi-agent systems with delays. Acta Physica Sinica, 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [10] Zhao Yan-Yan, Jiang Guo-Ping. Fault diagnosis for a class of output-coupling complex dynamical networks with time delay. Acta Physica Sinica, 2011, 60(11): 110206. doi: 10.7498/aps.60.110206
    [11] Luo Yong-Jian, Yu Qian, Zhang Wei-Dong. Research on impulsive synchronization approach ofparameter uncertain hyperchaotic systems with time-delay. Acta Physica Sinica, 2011, 60(11): 110504. doi: 10.7498/aps.60.110504
    [12] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [13] Jin Jian-Xiu, Qiu Shui-Sheng, Xie Li-Ying, Feng Ming-Ku. A method of detecting the unpredictability of chaotic signals based on periodic orbit statistics. Acta Physica Sinica, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [14] Gao Xin, Liu Xing-Wen. Delayed fuzzy control of a unified chaotic system. Acta Physica Sinica, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [15] Ren Ren, Xu Jin, Zhu Shi-Hua. Prediction of chaotic time sequence using least squares support vector domain. Acta Physica Sinica, 2006, 55(2): 555-563. doi: 10.7498/aps.55.555
    [16] Yan Sen-Lin, Wang Sheng-Qian. Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater. Acta Physica Sinica, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [17] Ma Xi-Kui, Yang Mei, Zou Jian-Long, Wang Ling-Tao. Study of complex behavior in a time-delayed van der Pol’s electromagnetic system (Ⅰ)——The phenomena of bifurcations and chaos. Acta Physica Sinica, 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] Gao Chuan-Hou, Zhou Zhi-Min, Shao Zhi-Jiang. Chaotic analysis for blast furnace ironmaking process. Acta Physica Sinica, 2005, 54(4): 1490-1494. doi: 10.7498/aps.54.1490
    [19] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [20] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
Metrics
  • Abstract views:  4308
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2021
  • Accepted Date:  28 January 2021
  • Available Online:  29 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回