Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers

Mu Peng-Hua Chen Hao Liu Guo-Peng Hu Guo-Si

Citation:

Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers

Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si
PDF
HTML
Get Citation
  • As an important part of optical sources, nanolasers have a prominent influence in photonic circuit integration, and their nonlinear dynamics has become one of the research hotspots in recent years. In this work, we investigate the time-delay signature and bandwidth characteristics in a cascade-coupled nanolaser system, in which the master nanolaser is connected to an external feedback cavity and injected into the intermediate nanolaser and the slave nanolaser sequentially. The 0-1 chaos test is introduced to quantify the dynamics of the nanolaser, which can accurately distinguish whether the laser is in a chaotic state, and the autocorrelation function is used to analyze the time-delay characteristics in the laser output signal. This type of calculation has the advantages of fast operation speed, high accuracy and anti-noise robustness. The lower the autocorrelation value, the more difficult it is to extract useful information from the chaotic random sequence. The bandwidth is defined as a value where the range between DC and frequency contains 80% of the spectral power, a value that is only applicable to chaotic states. In the simulation, we compare and analyze the two cases of whether the intermediate nanolaser has a peak with obvious time-delay signature. The research results show that by selecting appropriate system parameters, the slave nanolaser can always output a broadband chaotic signal without obvious time-delay signature. Under the condition of a certain injection intensity, by changing the frequency detuning parameter, the intermediate nanolaser has an obvious time-delay signature, and then the slave nano-laser can output chaotic signals which can suppress time-delay signature and enhance bandwidth in a small parameter interval. When the time-delay signal of the intermediate nanolaser is completely hidden, the slave nanolaser can achieve the suppression of the time-delay signature in a larger parameter plane, meanwhile the bandwidth is significantly enhanced. In addition, by plotting the two-dimensional spatial distribution diagram and bandwidth line diagram of the output from the nanolaser under frequency detuning and injection intensity, it is determined that the nanolaser can simultaneously suppress the delay characteristics and enhance the bandwidth under chaotic signals. This provides an important theoretical basis for realizing the practical applications in secrecy-enhanced chaotic optical communication.
      Corresponding author: Hu Guo-Si, hugs@ytu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020QF090), the Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (Grant No. KJS2066), and the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University (Grant No. KJS2045).
    [1]

    Li N Q, Susanto H, Cemlyn B, Henning I D, Adams M J 2017 Opt. Lett. 42 3494Google Scholar

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Select. Topics Quantum Electron. 10 991Google Scholar

    [4]

    Tsay H L, Wang C Y, Chen J D, Lin F Y 2020 Opt. Express 28 24037Google Scholar

    [5]

    Qin J, Zhao Q C, Xu D J, Yin H X, Chang Y, Huang D G 2016 Mod. Phys. Lett. B 30 1650199Google Scholar

    [6]

    Uchida A, Amano K, Inoue M, et al. 2008 Nat. Photon 2 728Google Scholar

    [7]

    Rasmussen T S, Mork J 2021 Opt. Express 29 14182Google Scholar

    [8]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [9]

    Zhang Y, Chen Q, Li S, Yu J, Xu H, Yin F, Dai Y, Xu K 2023 2023 21st International Conference on Optical Communications and Networks (ICOCN) Qufu, China, 2023-07-31 pp1–3

    [10]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [11]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54Google Scholar

    [13]

    Tartwijk jk G H M V, Lenstra D 1995 Quantum Semiclass. Opt. 7 87Google Scholar

    [14]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [15]

    Jiang N, Wang Y J, Zhao A K, Liu S Q, Zhang Y Q, Chen L, Li B C, Qiu K 2020 Opt. Express 28 1999Google Scholar

    [16]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515Google Scholar

    [17]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [18]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124Google Scholar

    [19]

    Sakuraba R, Kanno K, Iwakawa K, Uchida A 2013 Frontiers in Optics Orlando, Florida, 2013 pFM3C.4

    [20]

    Hong Y, Quirce A, Wang B, Ji S, Panajotov K, Spencer P S 2016 IEEE J. Quantum Electron. 52 2400508Google Scholar

    [21]

    Mu P H, He P F, Li N Q 2019 IEEE Access 7 11041Google Scholar

    [22]

    Sattar Z A, Shore K A 2015 J. Lightwave Technol. 33 3028Google Scholar

    [23]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800106Google Scholar

    [24]

    Sattar Z A, Kamel N A, Shore K A 2016 IEEE J. Quantum Electron. 52 1200108Google Scholar

    [25]

    Han H, Shore K A 2016 IEEE J. Quantum Electron. 52 2000306Google Scholar

    [26]

    Elsonbaty A, Hegazy S F, Obayya S S A 2018 Opt. Laser Eng. 107 342Google Scholar

    [27]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quantum Electron. 55 2000407Google Scholar

    [28]

    Sattar Z A, Shore K A 2016 IEEE J. Quantum Electron. 52 1100108Google Scholar

    [29]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332Google Scholar

    [30]

    Nguimdo R M, Colet P, Larger L, Pesquera L 2011 Phys. Rev. Lett. 107 034103Google Scholar

    [31]

    Rontani D, Locquet A, Sciamanna M, Citrin D, Ortin S 2009 IEEE J. Quantum Electron. 45 879Google Scholar

    [32]

    Priyadarshi S, Hong Y, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707Google Scholar

    [33]

    Li X F, Pan W, Luo B, Ma D 2006 IEEE J. Quantum Electron. 42 953Google Scholar

    [34]

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2020 Opt. Express 28 26421Google Scholar

    [35]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

  • 图 1  三级联耦合NL的示意图. MNL, 主纳米激光器; INL, 中间纳米激光器; SNL, 从纳米激光器; FM, 反射镜; VA, 可变衰减器; OI, 光隔离器

    Figure 1.  Schematic diagram of three cascade-coupled NLs. MNL, master NL; INL, intermediate NL; SNL, slave NL; FM, reflector; VA, variable attenuator; OI, optical isolator.

    图 2  $ {\tau }_{{\mathrm{d}}}=0.2\;{\mathrm{n}}{\mathrm{s}} $时, 不同反馈参数下MNL的时序图 (a) 0.001; (b) 0.003; (c) 0.005; (d) 0.014

    Figure 2.  Timeseries of the MNL with different feedback parameters at $ {\tau }_{{\mathrm{d}}}=0.2\;{\mathrm{n}}{\mathrm{s}} $: (a) 0.001; (b) 0.003; (c) 0.005; (d) 0.014.

    图 3  反馈时延和反馈耦合因子下MNL混沌0-1测试的二维彩图

    Figure 3.  Two-dimensional color map of the 0-1 test for chaos of MNL with feedback delay-time and feedback coupling factor.

    图 4  MNL (a1)—(a3), INL (b1)—(b3)和SNL (c1)—(c3)的时间序列、功率谱和ACF, 参数设置为$ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1, $ {{{\Delta }}f}_{2} $= 15 GHz和$ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $= 85 ns–1

    Figure 4.  Timeseries, power spectrum and ACF of the MNL (a1)–(a3), INL (b1)–(b3) and SNL (c1)–(c3), parameter settings are $ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1, $ {{{\Delta }}f}_{2} $= 15 GHz and $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $= 85 ns–1.

    图 5  情况1条件下SNL的0-1混沌二维彩图, 参数设置为$ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1

    Figure 5.  Two-dimensional color map of the 0-1 test for chaos of MNL under the condition of case1, parameter settings are $ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1.

    图 6  在情况1的条件下, 参数平面($ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $, $ {{\Delta }}{f}_{2} $)中SNL的TDS值二维图, 参数设置为$ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1

    Figure 6.  Two-dimensional map of TDS value of SNL in the parameter plane ($ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $, $ {{\Delta }}{f}_{2} $) under the condition of case1, parameter settings are $ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1.

    图 7  INL和SNL在不同注入强度和频率失谐下的带宽, 参数设置为$ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1

    Figure 7.  Bandwidth of INL and SNL with different injection strength and frequency detuning, parameter settings are $ {{\Delta }}{f}_{1} $= 0 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1.

    图 8  MNL (a1)—(a3), INL (b1)—(b3)和SNL (c1)—(c3)的时间序列、功率谱和ACF, 参数设置为$ {{\Delta }}{f}_{1} $= 15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1, $ {{{\Delta }}f}_{2} $= 15 GHz和$ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $= 85 ns–1

    Figure 8.  Timeseries, power spectrum and ACF of the MNL (a1)–(a3), INL (b1)–(b3) and SNL (c1)–(c3), parameter settings are $ {{\Delta }}{f}_{1} $= 15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1, $ {{{\Delta }}f}_{2} $= 15 GHz and $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $= 85 ns–1.

    图 9  情况2条件下SNL的0-1混沌二维彩图, 参数设置为$ {{\Delta }}{f}_{1} $= 15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1}$= 120 ns–1

    Figure 9.  Two-dimensional color map of the 0-1 test for chaos of MNL under the condition of case2, parameter settings are $ {{\Delta }}{f}_{1} $= 15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $= 120 ns–1.

    图 10  在情况二条件下, 参数平面($ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $, $ {{{\Delta }}f}_{2} $)中SNL的TDS值二维图, 参数设置为: $ {{\Delta }}{f}_{1} $=15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $=120 ns–1

    Figure 10.  Two-dimensional map of TDS value of SNL in the parameter plane ($ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}2} $, $ {{\Delta }}{f}_{2} $) under the condition of case 2, parameter settings are $ {{\Delta }}{f}_{1} $=15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $=120 ns–1.

    图 11  INL和SNL在不同注入强度和频率失谐下的带宽, 参数设置为$ {{\Delta }}{f}_{1} $=15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $=120 ns–1

    Figure 11.  Bandwidth of INL and SNL with different injection strength and frequency detuning, parameter settings are $ {{\Delta }}{f}_{1} $=15 GHz, $ {k}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}1} $=120 ns–1.

    表 1  仿真所用参数[24,28]

    Table 1.  Parameters used in simulation[24,28].

    参数 符号 参考值
    工作波长/nm $ \lambda $ $ 1591 $
    阈值电流/mA $ {I}_{{\mathrm{t}}{\mathrm{h}}} $ $ 1.1 $
    反馈腔长/μm $ L $ $ 1.39 $
    活性层体积/cm3 $ {V}_{{\mathrm{a}}} $ $ 3.96\times {10}^{-13} $
    局限因子 $ \varGamma $ $ 0.645 $
    品质因子 $ Q $ $ 428 $
    Purcell因子 $ F $ $ 14 $
    自发辐射耦合因子/($ {{\mathrm{c}}{\mathrm{m}}}^{3}\cdot {{\mathrm{s}}}^{-1} $) $ \beta $ $ 0.05 $
    微分增益/($ {{\mathrm{c}}{\mathrm{m}}}^{3}\cdot {{\mathrm{s}}}^{-1} $) $ {g}_{{\mathrm{n}}} $ $ 1.65\times {10}^{-6} $
    光子寿命/ps $ {\tau }_{{\mathrm{p}}} $ $ 0.36 $
    反馈时延/ns $ {\tau }_{{\mathrm{d}}} $ $ 0.2 $
    载流子寿命/ns $ {\tau }_{{\mathrm{n}}} $ $ 1 $
    透明载流子数/$ {{\mathrm{c}}{\mathrm{m}}}^{-3} $ $ {N}_{0} $ $ 1.1\times {10}^{18} $
    增益饱和因子/$ {{\mathrm{c}}{\mathrm{m}}}^{3} $ $ \varepsilon $ $ 2.3\times {10}^{-17} $
    折射率 $ n $ $ 3.4 $
    线宽增强因子 $ \alpha $ $ 5 $
    镜面反射率 $ {R}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{t}}} $ $ 0.95 $
    激光器腔面反射率 $ R $ $ 0.85 $
    自由空间中的光速/(m·s–1) $ c $ $ 3\times {10}^{8} $
    注入系数 $ {R}_{{\mathrm{i}}{\mathrm{n}}{\mathrm{j}}} $ $ 0-0.1 $
    反馈耦合因子 $ f $ $ 0-0.9 $
    DownLoad: CSV
  • [1]

    Li N Q, Susanto H, Cemlyn B, Henning I D, Adams M J 2017 Opt. Lett. 42 3494Google Scholar

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Select. Topics Quantum Electron. 10 991Google Scholar

    [4]

    Tsay H L, Wang C Y, Chen J D, Lin F Y 2020 Opt. Express 28 24037Google Scholar

    [5]

    Qin J, Zhao Q C, Xu D J, Yin H X, Chang Y, Huang D G 2016 Mod. Phys. Lett. B 30 1650199Google Scholar

    [6]

    Uchida A, Amano K, Inoue M, et al. 2008 Nat. Photon 2 728Google Scholar

    [7]

    Rasmussen T S, Mork J 2021 Opt. Express 29 14182Google Scholar

    [8]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [9]

    Zhang Y, Chen Q, Li S, Yu J, Xu H, Yin F, Dai Y, Xu K 2023 2023 21st International Conference on Optical Communications and Networks (ICOCN) Qufu, China, 2023-07-31 pp1–3

    [10]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [11]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Phys. Lett. A 308 54Google Scholar

    [13]

    Tartwijk jk G H M V, Lenstra D 1995 Quantum Semiclass. Opt. 7 87Google Scholar

    [14]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [15]

    Jiang N, Wang Y J, Zhao A K, Liu S Q, Zhang Y Q, Chen L, Li B C, Qiu K 2020 Opt. Express 28 1999Google Scholar

    [16]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515Google Scholar

    [17]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [18]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124Google Scholar

    [19]

    Sakuraba R, Kanno K, Iwakawa K, Uchida A 2013 Frontiers in Optics Orlando, Florida, 2013 pFM3C.4

    [20]

    Hong Y, Quirce A, Wang B, Ji S, Panajotov K, Spencer P S 2016 IEEE J. Quantum Electron. 52 2400508Google Scholar

    [21]

    Mu P H, He P F, Li N Q 2019 IEEE Access 7 11041Google Scholar

    [22]

    Sattar Z A, Shore K A 2015 J. Lightwave Technol. 33 3028Google Scholar

    [23]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800106Google Scholar

    [24]

    Sattar Z A, Kamel N A, Shore K A 2016 IEEE J. Quantum Electron. 52 1200108Google Scholar

    [25]

    Han H, Shore K A 2016 IEEE J. Quantum Electron. 52 2000306Google Scholar

    [26]

    Elsonbaty A, Hegazy S F, Obayya S S A 2018 Opt. Laser Eng. 107 342Google Scholar

    [27]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quantum Electron. 55 2000407Google Scholar

    [28]

    Sattar Z A, Shore K A 2016 IEEE J. Quantum Electron. 52 1100108Google Scholar

    [29]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4332Google Scholar

    [30]

    Nguimdo R M, Colet P, Larger L, Pesquera L 2011 Phys. Rev. Lett. 107 034103Google Scholar

    [31]

    Rontani D, Locquet A, Sciamanna M, Citrin D, Ortin S 2009 IEEE J. Quantum Electron. 45 879Google Scholar

    [32]

    Priyadarshi S, Hong Y, Pierce I, Shore K A 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700707Google Scholar

    [33]

    Li X F, Pan W, Luo B, Ma D 2006 IEEE J. Quantum Electron. 42 953Google Scholar

    [34]

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2020 Opt. Express 28 26421Google Scholar

    [35]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

  • [1] Mu Peng-Hua, Wang Yi-Qiao, He Peng-Fei, Xu Yuan. Chaos Synchronization in a Dual-Laser Chaotic Multiplexing System Based on Nanolasers. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241659
    [2] Pang Shuang, Feng Yu-Ling, Yu Ping, Yao Zhi-Hai. Chaotic characteristics of output light from semiconductor laser with self-chaotic phase modulation and optical feedback. Acta Physica Sinica, 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [3] Jiang Pei, Zhou Pei, Li Nian-Qiang, Mu Peng-Hua, Li Xiao-Feng. Time delay concealment and unpredictability enhancement of nanolasers under external cavity regulation. Acta Physica Sinica, 2021, 70(11): 114201. doi: 10.7498/aps.70.20210049
    [4] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] Dong Wei, Wang Zhi-Bin. Improved hybrid plasmonic microcavity laser. Acta Physica Sinica, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [6] Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser. Acta Physica Sinica, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [7] Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser. Acta Physica Sinica, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [8] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [9] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [10] Wang Xi, Wang Yu-Hong, Li Xing-Yuan, Miao Miao. Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay. Acta Physica Sinica, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [11] An Bao-Ran, Liu Guo-Ping. Predictive controller for networked multi-agent systems with communication delay and packet loss. Acta Physica Sinica, 2014, 63(14): 140203. doi: 10.7498/aps.63.140203
    [12] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [13] Ji Liang-Hao, Liao Xiao-Feng, Liu Qun. Group consensus analysis of multi-agent systems with delays. Acta Physica Sinica, 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [14] Luo Yong-Jian, Yu Qian, Zhang Wei-Dong. Research on impulsive synchronization approach ofparameter uncertain hyperchaotic systems with time-delay. Acta Physica Sinica, 2011, 60(11): 110504. doi: 10.7498/aps.60.110504
    [15] Zhu Zhang-Ming, Hao Bao-Tian, Li Ru, Yang Yin-Tang. A novel nanometer CMOS interconnect optimal model with target delay and bandwidth constraint. Acta Physica Sinica, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [16] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [17] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [18] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [19] Gao Xin, Liu Xing-Wen. Delayed fuzzy control of a unified chaotic system. Acta Physica Sinica, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [20] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
Metrics
  • Abstract views:  1743
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2023
  • Accepted Date:  22 March 2024
  • Available Online:  03 April 2024
  • Published Online:  20 May 2024

/

返回文章
返回