Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of 905 nm vertical cavity surface emitting laser with high power conversion efficiency

Zhao Zhuang-Zhuang Xun Meng Pan Guan-Zhong Sun Yun Zhou Jing-Tao Wang Da-Hai Wu De-Xin

Citation:

Design and fabrication of 905 nm vertical cavity surface emitting laser with high power conversion efficiency

Zhao Zhuang-Zhuang, Xun Meng, Pan Guan-Zhong, Sun Yun, Zhou Jing-Tao, Wang Da-Hai, Wu De-Xin
PDF
HTML
Get Citation
  • Vertical cavity surface emitting lasers (VCSELs) have lots of excellent properties, such as circular beam, low threshold, single longitudinal mode, high speed modulation and monolithic array fabrication capability. The VCSELs have been widely used in data communication and short-distance optical interconnection. In the fields of distance detection and automatic driving, high accuracy lidars have become an indispensable component. In practical applications, 905 nm laser exhibits little absorption by the water vapor in the air. In addition, the 905 nm laser can match with both inexpensive Si detector and high response avalanche photodiode (APD). Therefore, the 905 nm semiconductor laser has become a key light source of lidar. This paper presents the design and fabrication of 905 nm VCSEL with high power conversion efficiency. First, the main factors influencing the power conversion efficiency (PCE) of VCSEL are analyzed theoretically. It is concluded that the slope efficiency contributes to the PCE most. In order to achieve a high slope efficiency, strained InGaAs is used as a quantum well material. Due to the wavelength redshift caused by the thermal effect, the lasing peak wavelength of the multiple quantum well (MQW) is designed to be about 892 nm by optimizing the In composition. The active region consists of three pairs of In0.123Ga0.88As/Al0.3Ga0.7 MQWs. The N-distributed Bragg reflectors (DBRs) are designed to have 40 pairs of Al0.9Ga0.1As/Al0.12Ga0.88As, and the P-DBRs are designed to have 20 pairs of Al0.9Ga0.1As/Al0.12Ga0.88As. The epitaxial structure is designed and grown by metal organic chemical vapor deposition (MOCVD). The cavity mode of the epitaxial wafer is around 903.7 nm. The photoluminescence (PL) spectrum is also measured. The peak wavelength is approximately 893.7 nm, and the full width at half maximum is 21.6 nm. Then, the 905 nm VCSELs with different apertures (6–18 μm) are fabricated via semiconductor technologies such as photolithography, evaporation, inductively coupled plasma (ICP), wet oxidation, electroplating, etc. Finally, the L-I-V characteristics and spectra of VCSELs with different apertures are tested. The obtained maximum slope efficiency and PCE of the devices are 1.12 W/A and 44.8%, respectively. In addition, the influences of aperture size on the far-field profiles and spectra of the devices are investigated. These 905 nm VCSELs with high PCE are potential for the miniaturization and lowing the cost of LiDAR.
      Corresponding author: Xun Meng, xunmeng@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LYJSC031), and the Project Funded by China Postdoctoral Science Foundation (Grant No. BX20200358)
    [1]

    Huffaker D L, Deppe D G 1994 Appl. Phys. Lett. 65 97Google Scholar

    [2]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phy. Sin. 65 134204Google Scholar

    [3]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. Lett. 28 2327Google Scholar

    [4]

    Jaeger, R, Grabherr, M, Jung, C, Michalzik, Reiner, G, Weigl 1997 Electron. Lett. 33 330Google Scholar

    [5]

    Yang X, Li M X, Zhao G, Freisem S, Deppe D G 2014 Electron. Lett. 50 1864Google Scholar

    [6]

    Mukoyama N, Otoma H, Sakurai J, Ueki N, Nakayama H 2008 Proc. SPIE 6908 690815

    [7]

    Seurin J F, Zhou D, Xu G, Miglo A, Ghosh C 2016 Proc. SPIE 9766 97660DGoogle Scholar

    [8]

    Larsson A 2011 IEEE J. Sel.Top. Quantum Electron. 17 1552Google Scholar

    [9]

    Harris J S, Sullivan T O, Sarmiento T, Lee M M, Vo S 2010 Semicond. Sci. Technol. 26 14010

    [10]

    Zhou D, Seurin J F, Xu G, Leeuwen R V, Miglo A, Wang Q, Kovsh A, Ghosh C 2017 Proc. SPIE 10122 1012206Google Scholar

    [11]

    Hao Y Q, Ma J L, Yan C L, Liu G J, Zhao Y J 2013 Laser Physics Letters 10 527

    [12]

    Pan G Z, Xie Y, Xu C, Xun M, Dong Y, Deng J, Chen H, Sun J 2018 IEEE J. Quantum Electron. 54 1

    [13]

    Zhong C, Zhang X, Hofmann W H E, Ning Y Q, Wang L J 2018 IEEE Photonics J. 10 1

    [14]

    Huang C Y, Wang H Y, Wu C H, Lo W C, Lin G R 2020 J. Lightwave Technol. 38 573Google Scholar

    [15]

    Xun M, Xu C, Xie Y, Deng J, Xu K, Chen H 2014 IEEE J. Quantum Electron. 51 1

    [16]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣 2011 物理学报 60 064201Google Scholar

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X 2011 Acta Phy. Sin. 60 064201Google Scholar

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Rao S, Yu H Y, Lv C C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phy. Sin. 67 104205Google Scholar

    [18]

    Warren M E, Carson R F, Joseph J R, Wilcox T, Dacha P, D. Abell J, Otis K J 2015 Proc. SPIE 9381 93810CGoogle Scholar

    [19]

    Zhang J W, Ning Y Q, Zhang X, Qiu J, Zeng Y G, Fu X H, Zhang J Y, Qin L, Wang L J 2018 Jpn. J. Appl. Phys. 57 100302Google Scholar

    [20]

    Chen X N, Shi J W, Chi K L, Y J L, Chen Jaso 2017 J. Lightwave Technol. 35 3242Google Scholar

    [21]

    Nanni J, Fernandez L, Hadi M U, Viana C, Tartarini G 2020 Electron. Lett. 56 385Google Scholar

    [22]

    Caliman A, Mereuta A, Wolf P, Sirbu A, Iakovlev V, Bimberg D, Kapon E 2016 Opt. Express 24 16329Google Scholar

    [23]

    Chase C, Yi R, Hofmann W, Chang-Hasnain C J 2010 Opt. Express 15 15461

    [24]

    Li X P, Peng Q J, Xu Z Y, Zhang X D, Wang X J 2020 IEEE Photonics Technol. Lett. 32 434Google Scholar

    [25]

    Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P, D'Asaro L A 2008 Proc. SPIE 6908 690808Google Scholar

    [26]

    Kressel, Henry 1977 Semiconductor Lasers and Heterojunction LEDs (New York: Academic) pp459−465

    [27]

    Coldren, Larry A 1995 Opt. Eng. 36 616

    [28]

    于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lv Z C, Cheng L W, Lang L G, Xia Y 2019 Acta Phy. Sin. 68 064207Google Scholar

    [29]

    Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y, Kano F 2009 IEEE J. Quantum Electron. 45 1183Google Scholar

    [30]

    周梅, 赵德刚 2016 物理学报 65 077802Google Scholar

    Zhou M, Zhao D G 2016 Acta Phy. Sin. 65 077802Google Scholar

  • 图 1  不同In组分下的InxGa1–xAs /Al0.3Ga0.6As量子阱增益谱(载流子浓度为5 × 1018 cm–3)

    Figure 1.  Gain spectra of InxGa1–xAs/Al0.3Ga0.6As QW with different In compositions (carrier concentration is 5 × 1018 cm–3).

    图 2  不同量子阱厚度、In组分下的InxGa1–xAs/Al0.3Ga0.6As量子阱增益随载流子浓度的变化

    Figure 2.  Gain spectra of InxGa1–xAs/Al0.3Ga0.6As QW with different well widths and In compositions versus carrier density.

    图 3  计算的不同对数的P-DBRs的反射谱

    Figure 3.  Calculated reflection spectra of P-DBRs with different pairs.

    图 4  测试的905 nm VCSEL外延片的 (a)白光反射谱和(b) PL谱

    Figure 4.  Measured (a) white light reflection spectrum and (b) PL spectrum of 905 nm VCSEL epitaxial wafer.

    图 5  VCSEL器件结构示意图

    Figure 5.  Schematic diagram of VCSEL device structure.

    图 6  不同氧化孔径的VCSEL对应的 (a)输出功率-电流特性; (b) 电压-电流特性; (c)阈值电流; (d)最大功率; (e)饱和电流; (f)阈值损耗功率

    Figure 6.  (a) L-I characteristics; (b) V-I characteristics; (c) threshold currents; (d) maximum output powers; (e) roll-over currents; (f) threshold power consumption of VCSELs with varied oxide apertures.

    图 7  测试的不同氧化孔径的VCSEL的 (a)斜率效率; (b)提取的最大微分斜率效率; (c) PCE; (d)提取的最大PCE的值

    Figure 7.  Measured (a) slope efficiency; (b) extracted maximum differential slope efficiency; (c) PCE and (d) extracted maximum PCE for VCSELs with varied oxide apertures.

    图 8  不同氧化孔径的VCSEL的远场和光谱

    Figure 8.  Far-field and spectra of VCSELs with different oxide apertures.

  • [1]

    Huffaker D L, Deppe D G 1994 Appl. Phys. Lett. 65 97Google Scholar

    [2]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phy. Sin. 65 134204Google Scholar

    [3]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. Lett. 28 2327Google Scholar

    [4]

    Jaeger, R, Grabherr, M, Jung, C, Michalzik, Reiner, G, Weigl 1997 Electron. Lett. 33 330Google Scholar

    [5]

    Yang X, Li M X, Zhao G, Freisem S, Deppe D G 2014 Electron. Lett. 50 1864Google Scholar

    [6]

    Mukoyama N, Otoma H, Sakurai J, Ueki N, Nakayama H 2008 Proc. SPIE 6908 690815

    [7]

    Seurin J F, Zhou D, Xu G, Miglo A, Ghosh C 2016 Proc. SPIE 9766 97660DGoogle Scholar

    [8]

    Larsson A 2011 IEEE J. Sel.Top. Quantum Electron. 17 1552Google Scholar

    [9]

    Harris J S, Sullivan T O, Sarmiento T, Lee M M, Vo S 2010 Semicond. Sci. Technol. 26 14010

    [10]

    Zhou D, Seurin J F, Xu G, Leeuwen R V, Miglo A, Wang Q, Kovsh A, Ghosh C 2017 Proc. SPIE 10122 1012206Google Scholar

    [11]

    Hao Y Q, Ma J L, Yan C L, Liu G J, Zhao Y J 2013 Laser Physics Letters 10 527

    [12]

    Pan G Z, Xie Y, Xu C, Xun M, Dong Y, Deng J, Chen H, Sun J 2018 IEEE J. Quantum Electron. 54 1

    [13]

    Zhong C, Zhang X, Hofmann W H E, Ning Y Q, Wang L J 2018 IEEE Photonics J. 10 1

    [14]

    Huang C Y, Wang H Y, Wu C H, Lo W C, Lin G R 2020 J. Lightwave Technol. 38 573Google Scholar

    [15]

    Xun M, Xu C, Xie Y, Deng J, Xu K, Chen H 2014 IEEE J. Quantum Electron. 51 1

    [16]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣 2011 物理学报 60 064201Google Scholar

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X 2011 Acta Phy. Sin. 60 064201Google Scholar

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Rao S, Yu H Y, Lv C C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phy. Sin. 67 104205Google Scholar

    [18]

    Warren M E, Carson R F, Joseph J R, Wilcox T, Dacha P, D. Abell J, Otis K J 2015 Proc. SPIE 9381 93810CGoogle Scholar

    [19]

    Zhang J W, Ning Y Q, Zhang X, Qiu J, Zeng Y G, Fu X H, Zhang J Y, Qin L, Wang L J 2018 Jpn. J. Appl. Phys. 57 100302Google Scholar

    [20]

    Chen X N, Shi J W, Chi K L, Y J L, Chen Jaso 2017 J. Lightwave Technol. 35 3242Google Scholar

    [21]

    Nanni J, Fernandez L, Hadi M U, Viana C, Tartarini G 2020 Electron. Lett. 56 385Google Scholar

    [22]

    Caliman A, Mereuta A, Wolf P, Sirbu A, Iakovlev V, Bimberg D, Kapon E 2016 Opt. Express 24 16329Google Scholar

    [23]

    Chase C, Yi R, Hofmann W, Chang-Hasnain C J 2010 Opt. Express 15 15461

    [24]

    Li X P, Peng Q J, Xu Z Y, Zhang X D, Wang X J 2020 IEEE Photonics Technol. Lett. 32 434Google Scholar

    [25]

    Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P, D'Asaro L A 2008 Proc. SPIE 6908 690808Google Scholar

    [26]

    Kressel, Henry 1977 Semiconductor Lasers and Heterojunction LEDs (New York: Academic) pp459−465

    [27]

    Coldren, Larry A 1995 Opt. Eng. 36 616

    [28]

    于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇 2019 物理学报 68 064207Google Scholar

    Yu H Y, Yao S, Zhang H M, Wang Q, Zhang Y, Zhou G Z, Lv Z C, Cheng L W, Lang L G, Xia Y 2019 Acta Phy. Sin. 68 064207Google Scholar

    [29]

    Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y, Kano F 2009 IEEE J. Quantum Electron. 45 1183Google Scholar

    [30]

    周梅, 赵德刚 2016 物理学报 65 077802Google Scholar

    Zhou M, Zhao D G 2016 Acta Phy. Sin. 65 077802Google Scholar

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Wang Tao, Peng Xue-Fang, He Liang, Shen Xiao-Yu, Zhu Ren-Jiang, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. 509 nm high power wide-tuned external cavity surface emitting laser. Acta Physica Sinica, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [3] Wu Ya-Dong, Zhu Ren-Jiang, Yan Ri, Peng Xue-Fang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Intracavity frequency-doubled external-cavity surface-emitting blue laser with high conversion efficiency. Acta Physica Sinica, 2024, 73(1): 014203. doi: 10.7498/aps.73.20231278
    [4] Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu. Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device. Acta Physica Sinica, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [5] Zhou Yin-Li, Jia Yu-Chen, Zhang Xing, Zhang Jian-Wei, Liu Zhan-Chao, Ning Yong-Qiang, Wang Li-Jun. 795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope. Acta Physica Sinica, 2022, 71(13): 134204. doi: 10.7498/aps.71.20212422
    [6] Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping. Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Acta Physica Sinica, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [7] Pan Guan-Zhong, Xun Meng, Zhao Zhuang-Zhuang, Sun Yun, Jiang Wen-Jing, Zhou Jing-Tao, Wu De-Xin. Multi-junction cascade 905 nm vertical cavity surface emitting lasers with high power density. Acta Physica Sinica, 2022, 71(20): 204203. doi: 10.7498/aps.71.20220888
    [8] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [9] Zhou Guang-Zheng, Li Ying, Lan Tian, Dai Jing-Jing, Wang Cong-Cong, Wang Zhi-Yong. Design and simulation of integration of vertical cavity surface emitting lasers and heterojunction bipolar transistor. Acta Physica Sinica, 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [10] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [11] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [12] Wang Zhen-Fu, Yang Guo-Wen, Wu Jian-Yao, Song Ke-Chang, Li Xiu-Shan, Song Yun-Fei. High-power, high-efficiency 808 nm laser diode array. Acta Physica Sinica, 2016, 65(16): 164203. doi: 10.7498/aps.65.164203
    [13] Zhou Zhen-Li, Xia Guang-Qiong, Deng Tao, Zhao Mao-Rong, Wu Zheng-Mao. Multiple polarization switching in mutually coupled vertical-cavity surface emitting lasers. Acta Physica Sinica, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [14] Liu Jun, Zhang Tian-En, Zhang Wei, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Tang Jun. Design and optimization of integrated micro optical gyroscope based on a planar ring resonator. Acta Physica Sinica, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [15] Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOSFET. Acta Physica Sinica, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [16] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [17] Guan Bao-Lu, Guo Xia, Yang Hao, Liang Ting, Gu Xiao-Ling, Guo Jing, Deng Jun, Gao Guo, Shen Guang-Di. Investigation and design of widely tunable vertical-cavity surface emitting lasers. Acta Physica Sinica, 2007, 56(8): 4585-4589. doi: 10.7498/aps.56.4585
    [18] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] Tong Cun-Zhu, Niu Zhi-Chuan, Han Qin, Wu Rong-Han. Design and analysis of 1.3μm GaAs-based quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [20] Li Hui-Qing, Zhang Jie, Cui Da-Fu, Xu Zu-Yan, Ning Yong-Qiang, Yan Chang-Ling, Qin Li, Liu Yun, Wang Li-Jun, Cao Jian-Lin. Optimal designs for high-power vertical cavity surface emitting lasers. Acta Physica Sinica, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
Metrics
  • Abstract views:  5812
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2021
  • Accepted Date:  30 January 2021
  • Available Online:  28 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回