Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope

Zhou Yin-Li Jia Yu-Chen Zhang Xing Zhang Jian-Wei Liu Zhan-Chao Ning Yong-Qiang Wang Li-Jun

Citation:

795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope

Zhou Yin-Li, Jia Yu-Chen, Zhang Xing, Zhang Jian-Wei, Liu Zhan-Chao, Ning Yong-Qiang, Wang Li-Jun
PDF
HTML
Get Citation
  • Single-transverse mode vertical-cavity surface-emitting lasers (VCSELs) are preferable optical sources for small low-power atomic sensors, including chip-scale atomic clocks, magnetometers, and gyroscopes.When VCSEL is used as the pump source of nuclear magnetic resonance gyroscope, it is required to have high single-mode output power. Oxide aperture diameter must be sufficiently small (< 4 µm) in a conventional oxide-confined VCSEL to support the fundamental mode alone. However, high series resistance (typically > 200 Ω for GaAs-based VCSEL) from the small aperture limits its output power and reliability due to excessive current-induced self-heating and high current density. It is a very attractive idea to achieve high power operation of an intrinsic single mode VCSEL based on a large oxide aperture by means of epitaxial structure design without introducing additional process steps. Transverse optical confinement in oxide-confined VCSELs crucially depends on the thickness of oxide layer and its position relative to standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as the difference in effective refractive index between core and cladding of the VCSEL, thereby reducing the number of transverse modes andincreasing the mode extension beyond oxide aperture. A 795-nm VCSEL is designed and fabricated based on this concept. A cavity structure of VCSEL with gain-cavity detuning of ~10.8 nm at room temperature is adopted in this paper. The effective refractive index and the standing wave distribution of the VCSEL are calculated, and the position of the oxide layer in the epitaxial structure of the VCSEL is optimized according to the standing wave distribution. Finally, the structure with low effective refractive index difference is obtained. The proposed device achieves high single-mode operation of 4.1 mW at 80 ℃, SMSR of 41.68 dB, and OPSR of 27.4 dB. The VCSEL is applied to a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance, and satisfactory test results are obtained. This paper presents a new method of designing single-mode high power VCSEL and its feasibility is also demonstrated through experimental results.
      Corresponding author: Zhang Xing, zhangx@ciomp.ac.cn ; Liu Zhan-Chao, liuzhanchao@hotmail.com
    • Funds: Project supported by National Key Research and Development Program (Grant No. 2018YFB2002400), the National Natural Science Foundation of China (Grant Nos. 61804151, 62090060, 61874117, 11774343, 61874119), and the Science and Technology Development Project of Jilin Province (Grant No. 20200401006GX).
    [1]

    Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar

    [2]

    Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar

    [3]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [4]

    Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar

    [5]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar

    [6]

    Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar

    [7]

    Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar

    [8]

    Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar

    [9]

    Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar

    [10]

    Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar

    [11]

    Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar

    [12]

    Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar

    [13]

    Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar

    [14]

    Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar

    [15]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar

    [16]

    Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar

    [17]

    Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)

    [18]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar

    [19]

    张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar

    Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar

    [21]

    Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16

    [22]

    Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573

    [23]

    赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar

    Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar

    [24]

    Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar

    [25]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [26]

    Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar

    [27]

    时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar

    Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar

    [28]

    Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124

    [29]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar

    [30]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781

    [31]

    Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar

  • 图 1  VCSEL结构图

    Figure 1.  Schematic of VCSELs.

    图 2  (a) In0.125Al0.14Ga0.735As/Al0.3Ga0.7As量子阱在不同温度下的增益谱; (b)腔模位置增益和波长随温度变化

    Figure 2.  (a) Gain spectra of In0.125Al0.14Ga0.735As/Al0.3Ga0.7As quantum wells at different temperatures; (b) the wavelength and gain at cavity-mode at different temperature.

    图 3  在折射率差为(a) 0.01和(b) 0.002的两个VCSEL中径向3个模式LP01, LP11, 和LP21 的分布

    Figure 3.  (a) Distribution of LP01, LP11, and LP21 modes along the radial direction of VCSELs with (a) Δneff = 0.01 and (b) Δneff = 0.002.

    图 4  VCSEL的功率特性的光谱特性测试系统原理图

    Figure 4.  Schematic diagram of the power and spectrum characteristic test system of VCSEL.

    图 5  器件在不同电流 (a)及不同温度(b)下的光谱特性

    Figure 5.  Spectral characteristics of VCSELs with different injection current (a) and different temperature (b).

    图 6  VCSEL在80 ℃下不同电流下的近场光斑

    Figure 6.  Near field patterns of VCSEL under different current at 80 ℃.

    图 7  (a) VCSEL的功率电流曲线; (b)阈值电流随温度变化

    Figure 7.  (a) Power-current characteristics of the device; (b) threshold current varying with temperature.

    图 8  (a) VCSEL的偏振功率曲线; (b) 80 ℃, 5 mA时的偏振光谱

    Figure 8.  (a)Optical power of VCSEL in different polarization angles at 80 ℃; (b) polarization-resolved spectrum of VCSEL at 80 ℃ and 5 mA.

    图 9  NMRG系统原理图

    Figure 9.  Diagram of the NMRG prototype.

    图 10  采用(a)商用DBR激光器和(b)新设计VCSEL激光器作为NMRG的抽运源测得的系统FID信号

    Figure 10.  The FID signal of the NMRG system obtain by using (a) commercial DBR laser and (b) newly designed VCSEL laser as the pump source.

    图 11  采用(a)商用DBR激光器和(b)新设计VCSEL激光器作为NMRG的抽运源测得的系统信噪比

    Figure 11.  The signal-to-noise ratio of the NMRG system obtain by using (a) commercial DBR laser and (b) newly designed VCSEL laser as the pump source.

  • [1]

    Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar

    [2]

    Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar

    [3]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [4]

    Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar

    [5]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar

    [6]

    Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar

    [7]

    Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar

    [8]

    Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar

    [9]

    Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar

    [10]

    Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar

    [11]

    Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar

    [12]

    Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar

    [13]

    Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar

    [14]

    Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar

    [15]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar

    [16]

    Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar

    [17]

    Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)

    [18]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar

    [19]

    张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar

    Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar

    [21]

    Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16

    [22]

    Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573

    [23]

    赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar

    Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar

    [24]

    Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar

    [25]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [26]

    Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar

    [27]

    时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar

    Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar

    [28]

    Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124

    [29]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar

    [30]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781

    [31]

    Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar

Metrics
  • Abstract views:  3871
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2021
  • Accepted Date:  18 February 2022
  • Available Online:  29 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回