Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exact solutions to Stark effect of rigid symmetric-top molecules

Chen Chang-Yuan Sun Guo-Hua Wang Xiao-Hua Sun Dong-Sheng You Yuan Lu Fa-Lin Dong Shi-Hai

Citation:

Exact solutions to Stark effect of rigid symmetric-top molecules

Chen Chang-Yuan, Sun Guo-Hua, Wang Xiao-Hua, Sun Dong-Sheng, You Yuan, Lu Fa-Lin, Dong Shi-Hai
PDF
HTML
Get Citation
  • In this work a new scheme is proposed to accurately calculate the rotational energy level of the rigid symmetric-top molecule subjected to the external electric field, and also to obtain the corresponding analytical wave functions. For this purpose, first we use the different forms of function transformation and variable substitution to transform the differential equation of the polar angle θ into a confluent Heun differential equation, and then we use the characteristics of the confluent Heun differential equation and the confluent Heun function to find two linearly dependent solutions of the same eigenstates, which are used to construct the Wronskian determinant to obtain the exact energy spectrum equation. Finally, with the aid of the Maple software, we calculate the eigenvalues for different quantum states, and then substitute the obtained eigenvalues into the unnormalized eigenfunction to obtain the analytical normalized eigenfunction expressed by the confluent Heun function. These results are conducive to the in-depth study of the Stark effect of symmetric-top molecules.
      Corresponding author: Chen Chang-Yuan, chency@yctu.edu.cn ; Dong Shi-Hai, dongsh2@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975196) and the SIP, Instituto Politécnico Nacional (IPN), Mexico (Grant No. 20210414)
    [1]

    Townes C H, Schawlow A L 1975 Microwave Spectroscopy (New York: Dover Publications, Inc.) pp60−62, 248−251

    [2]

    Wollrab J E 1967 Rotational Spectra and Molecular Structure (New York: Academic Press) pp15−18, 247−250

    [3]

    Shirley J H 1963 J. Chem. Phys. 38 2896Google Scholar

    [4]

    Tomutza L, Mizushima M 1972 J. Quant. Spectrosc. Radiat. Transfer. 12 925Google Scholar

    [5]

    Roeggen I 1972 Atomic Date 4 289Google Scholar

    [6]

    Maergoiz A I, Troe J 1993 J. Chem. Phys. 99 3218Google Scholar

    [7]

    Maergoiz A I, Troe J, Weiss Ch 1994 J. Chem. Phys. 101 1885Google Scholar

    [8]

    Fernández F M 1995 J. Math. Chem. 18 197Google Scholar

    [9]

    Burrowst B L, Cohen M, Feldmann T 1995 J. Phys. B 28 4249Google Scholar

    [10]

    Andreev S N, Makarov V P 2008 Radiophys. Quantum Electron. 51 718Google Scholar

    [11]

    Sun G H, Chen C Y, Taud H, Yáñez-Márquez C, Dong S H 2020 Phys. Lett. A 384 126480Google Scholar

    [12]

    Chen C Y, Wang X H, You Y, Sun G H, Dong S H 2020 Int. J. Quantum Chem. 120 e26336Google Scholar

    [13]

    Chen C Y, You Y, Wang X H, Lu F L, Sun D S, Dong S H 2021 Results Phys. 24 104115Google Scholar

    [14]

    Chen C Y, Sun D S, Sun G H, Wang X H, You Y, Dong S H 2021 Int. J. Quantum Chem. 121 e26546Google Scholar

    [15]

    Fiziev P P 2010 J. Phys. A 43 035203Google Scholar

    [16]

    Downing C A 2013 J. Math. Phys. 54 072101Google Scholar

    [17]

    Al-Gwaiz M A 2008 Sturm-Liouville Theory and its Applications (London: Springer-Verlag London Limited) pp45−46, 55−59

    [18]

    程建春 2016 数学物理方程及其近似方法(第2版) (北京: 科学出版社) 第109−111, 133−135页

    Cheng J C 2016 The Equations for Mathematical Physics and Their Approximate Methods (2nd Ed.) (Beijing: Science Press) pp109−111, 133−135 (in Chinese)

    [19]

    Wang H Y 2017 Mathematics for Physicists (Beijing: Science Press) pp130−146

  • 图 1  对称陀螺分子的$ f(\lambda ) $λ的变化曲线 (a) $ b = 1, \;K = 0, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (b) $ b = 5, \;K = 1, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (c) $b = $$ 10, \;K = 2, \;M = 0\, , - 1\, , - 2\, , - 3$; (d) $ b = 20, \;K = 3, \;M = 0\, , - 1\, , - 2\, , - 3 $

    Figure 1.  Plot of $ f(\lambda ) $ as the function of λ for the symmetric-top molecules: (a) $ b = 1, \;K = 0, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (b) $b = 5, $$ \;K = 1, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4$; (c) $ b = 10, \;K = 2, \;M = 0\, , - 1\, , - 2\, , - 3 $; (d) $ b = 20, \;K = 3, \;M = 0\, , - 1\, , - 2\, , - 3 $.

    图 2  $ {N_1}{\varTheta _1}(x) $$ {( - 1)^n}{N_2}{\varTheta _2}(x) $是线性相关的 (a) $ b = 1\, , \;J = 1\, , \;K = 1\, , \;M = 1\, , \;n = 0 $; (b) $b = 1\, , \;J = 1\, , \;K = 1\, , \;M = $$ - 1\, , \;n = 0$; (c) $ b = 10\, , \;J = 3\, , \;K = 1\, , \;M = 1\, , \;n = 2 $; (d) $ b = 1\, 0, \;J = 3\, , \;K = 1\, , \;M = 2\, , \;n = 1 $

    Figure 2.  Linear dependence relation between $ {N_1}{\varTheta _1}(x) $ and $ {( - 1)^n}{N_2}{\varTheta _2}(x) $: (a) $ b = 1\, , \;J = 1\, , \;K = 1\, , \;M = 1\, , \;n = 0 $; (b) $b = $$ 1\, , \;J = 1\, , \;K = 1\, , \;M = - 1\, , \;n = 0$; (c) $ b = 10\, , \;J = 3\, , \;K = 1\, , \;M = 1\, , \;n = 2 $; (d) $ b = 1\, 0, \;J = 3\, , \;K = 1\, , \;M = 2\, , \;n = 1 $.

    表 1  对称陀螺分子λ的精确值

    Table 1.  Precise values of λ for the symmetric-top molecules.

    JK(K, M)nb = 1b = 5b = 10b = 20
    00(0, 0)0–0.15766348–2.36561388–6.04507511–14.18676623
    10(0, 0)12.090760652.638747031.72333341–2.64067155
    (0, 1) (0, –1)01.950333910.90475071–1.52336944–7.83391897
    1(1, 1) (–1, –1)01.46550429–1.13615048–4.90088894–13.09274467
    (1, 0) (–1, 0)01.950333910.90475071–1.52336944–7.83391897
    (1, –1) (–1, 1)02.459307913.252409822.28859798–2.10241580
    20(0, 0)26.024031666.645462487.879327297.59702750
    (0, 1) (0, –1)16.011577936.149323345.869205893.21233397
    (0, 2) (0, –2)05.976230805.427707993.91145991–0.75028417
    1(1, 2) (–1, –2)05.646101433.879658481.11394605–5.42557601
    (1, 1) (–1, –1)15.834447995.023085993.42628660–1.26151418
    (1, 0) (–1, 0)16.011577936.149323345.869205893.21233397
    (1, –1) (–1, 1)16.173034597.176945398.522415018.17688040
    (1, –2) (–1, 2)06.311597337.080376786.959723944.30076661
    2(2, 2) (–2, –2)05.320807262.40921111–1.50915355–9.82205218
    (2, 1) (–2, –1)05.646101433.879658481.11394605–5.42557601
    (2, 0) (–2, 0)05.976230805.427707993.91145991–0.75028417
    (2, –1) (–2, 1)06.311597337.080376786.959723944.30076661
    (2, –2) (–2, 2)06.652669588.8901055510.436905509.90220896
    30(0, 0)312.0111225612.2860932613.2385170216.01072933
    (0, 1) (0, –1)212.0083261412.2018560412.6810976313.00122422
    (0, 2) (0, –2)111.9999651011.9805177711.7651602610.12548434
    (0, 3) (0, –3)011.9861196211.6579058610.685183797.32389600
    1(1, 3) (–1, –3)011.7371467510.447109648.384879203.22650134
    (1, 2) (–1, –2)111.8317670111.087912499.874213336.36151132
    (1, 1) (–1, –1)211.9222634411.6811748411.325104139.60625434
    (1, 0) (–1, 0)212.0083261412.2018560412.6810976313.00122422
    (1, –1) (–1, 1)212.0896404612.6088636913.7799881116.66271656
    (1, –2) (–1, 2)112.1658990812.8407506113.6633627514.14238561
    (1, –3) (–1, 3)012.2368218412.9082152413.1095479411.68530530
    2(2, 3) (–2, –3)011.489840809.269971676.18154889–0.66884422
    (2, 2) (–2, –2)111.6616332810.181318268.011323142.77663392
    (2, 1) (–2, –1)111.8317670111.087912499.874213336.36151132
    (2, 0) (–2, 0)111.9999651011.9805177711.7651602610.12548434
    (2, –1) (–2, 1)112.1658990812.8407506113.6633627514.14238561
    (2, –2) (–2, 2)112.3291758913.6264772315.4798953418.60143861
    (2, –3) (–2, 3)012.4893203614.2061570415.7040303516.41950037
    3(3, 3) (–3, –3)011.244143418.122080694.05742691–4.40185593
    (3, 2) (–3, –2)011.489840809.269971676.18154889–0.66884422
    (3, 1) (–3, –1)011.7371467510.447109648.384879203.22650134
    (3, 0) (–3, 0)011.9861196211.6579058610.685183797.32389600
    (3, –1) (–3, 1)012.2368218412.9082152413.1095479411.68530530
    (3, –2) (–3, 2)012.4893203614.2061570415.7040303516.41950037
    (3, –3) (–3, 3)012.7436872115.5636856118.5635330021.76261674
    DownLoad: CSV

    表 2  对称陀螺分子(4, 0, 0)态的λ

    Table 2.  Values of λ of the state (4, 0, 0) for the symmetric-top molecules.

    bPerturbationMaergoiz[7]This workbMaergoiz[7]This work
    0.120.0000649420.0000649410015.69615.69559837
    120.0064935120.00649533200–31.200–31.20010397
    520.1623376620.16420.16352072300–90.598–90.59767902
    1020.6493506520.67120.67080282400–156.41–156.40991571
    2022.5974026022.97522.97522235500–226.31–226.30840320
    5036.2337662327.68127.68132358750–412.26–412.26234718
    DownLoad: CSV
  • [1]

    Townes C H, Schawlow A L 1975 Microwave Spectroscopy (New York: Dover Publications, Inc.) pp60−62, 248−251

    [2]

    Wollrab J E 1967 Rotational Spectra and Molecular Structure (New York: Academic Press) pp15−18, 247−250

    [3]

    Shirley J H 1963 J. Chem. Phys. 38 2896Google Scholar

    [4]

    Tomutza L, Mizushima M 1972 J. Quant. Spectrosc. Radiat. Transfer. 12 925Google Scholar

    [5]

    Roeggen I 1972 Atomic Date 4 289Google Scholar

    [6]

    Maergoiz A I, Troe J 1993 J. Chem. Phys. 99 3218Google Scholar

    [7]

    Maergoiz A I, Troe J, Weiss Ch 1994 J. Chem. Phys. 101 1885Google Scholar

    [8]

    Fernández F M 1995 J. Math. Chem. 18 197Google Scholar

    [9]

    Burrowst B L, Cohen M, Feldmann T 1995 J. Phys. B 28 4249Google Scholar

    [10]

    Andreev S N, Makarov V P 2008 Radiophys. Quantum Electron. 51 718Google Scholar

    [11]

    Sun G H, Chen C Y, Taud H, Yáñez-Márquez C, Dong S H 2020 Phys. Lett. A 384 126480Google Scholar

    [12]

    Chen C Y, Wang X H, You Y, Sun G H, Dong S H 2020 Int. J. Quantum Chem. 120 e26336Google Scholar

    [13]

    Chen C Y, You Y, Wang X H, Lu F L, Sun D S, Dong S H 2021 Results Phys. 24 104115Google Scholar

    [14]

    Chen C Y, Sun D S, Sun G H, Wang X H, You Y, Dong S H 2021 Int. J. Quantum Chem. 121 e26546Google Scholar

    [15]

    Fiziev P P 2010 J. Phys. A 43 035203Google Scholar

    [16]

    Downing C A 2013 J. Math. Phys. 54 072101Google Scholar

    [17]

    Al-Gwaiz M A 2008 Sturm-Liouville Theory and its Applications (London: Springer-Verlag London Limited) pp45−46, 55−59

    [18]

    程建春 2016 数学物理方程及其近似方法(第2版) (北京: 科学出版社) 第109−111, 133−135页

    Cheng J C 2016 The Equations for Mathematical Physics and Their Approximate Methods (2nd Ed.) (Beijing: Science Press) pp109−111, 133−135 (in Chinese)

    [19]

    Wang H Y 2017 Mathematics for Physicists (Beijing: Science Press) pp130−146

  • [1] Wan Jian-Jie, Zhao Xin-Ting, Li Ji-Guang, Dong Chen-Zhong. Theoretical investigation on Stark-induced transition probabilities of hydrogen-like ions. Acta Physica Sinica, 2021, 70(17): 173201. doi: 10.7498/aps.70.20210181
    [2] Duan Chun-Yang, Li Na, Zhao Yan, Li Chang-Yong. Accurate determination of ionization energy of 1, 3-diethoxybenzene via photoionization efficiency spectrum in electrostatic field. Acta Physica Sinica, 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [3] Dong Hui-Jie, Wang Xin-Yu, Li Chang-Yong, Jia Suo-Tang. Stark structure of atomic gallium. Acta Physica Sinica, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [4] Wang Li-Mei, Zhang Hao, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Observation of the avoided crossing of Cs Rydberg Stark states. Acta Physica Sinica, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [5] Li Chang-Yong, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Measurement and theoretical calculation for Stark energy and electric dipole moment of Cs Rydberg state. Acta Physica Sinica, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [6] Chang Xiu-Ying, Dou Xiu-Ming, Sun Bao-Quan, Xiong Yong-Hua, Ni Hai-Qiao, Niu Zhi-Chuan. Tuning photoluminescence of single InAs quantum dot by electric field. Acta Physica Sinica, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [7] Hu Xian-Quan, Cui Li-Peng, Luo Guang, Ma Yan. The analytic solution of the radial Schr?dinger equation for the superposed potentials. Acta Physica Sinica, 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [8] Song Xiao-Shu, Yu Chun-Ri, Yan An-Ying, Cheng Xin-Lu, Yang Xiang-Dong. Study on the high temperature line intensities of the symmetric-top molecule NH3. Acta Physica Sinica, 2009, 58(1): 223-228. doi: 10.7498/aps.58.223
    [9] Gao Song, Xu Xue-You, Zhou Hui, Zhang Yan-Hui, Lin Sheng-Lu. The dynamics of Rydberg atom in an electric field near the saddle point. Acta Physica Sinica, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [10] Wu Hai-Yan, Zhang Liang, Tan Yan-Ke, Zhou Xiao-Tao. Some new exact Jacobian elliptic function solutions of three kinds of nonlinear evolution equations. Acta Physica Sinica, 2008, 57(6): 3312-3318. doi: 10.7498/aps.57.3312
    [11] Song Xiao-Shu, Linghu Rong-Feng, Lü Bing, Cheng Xin-Lu, Yang Xiang-Dong. Study on high-temperature spectra of the asymptotic asymmetric-top molecule H122C16O. Acta Physica Sinica, 2008, 57(6): 3440-3445. doi: 10.7498/aps.57.3440
    [12] Zhang Min, Ban Shi-Liang. Stark effect of donor impurity states in strained heterojunctions under pressure. Acta Physica Sinica, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [13] Wu Guo-Jiang, Zhang Miao, Shi Liang-Ma, Zhang Wen-Liang, Han Jia-Hua. The extended expansion method for Jacobi elliptic function and new exact periodic solutions of Zakharov equations. Acta Physica Sinica, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [14] Huang Ding-Jiang, Zhang Hong-Qing. Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations. Acta Physica Sinica, 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [15] Li De-Sheng, Zhang Hong-Qing. Improved tanh-function method and the new exact solutions for the general variab le coefficient KdV equation and MKdV equation. Acta Physica Sinica, 2003, 52(7): 1569-1573. doi: 10.7498/aps.52.1569
    [16] Zhang Shan-Qing, Li Zhi-Bin. . Acta Physica Sinica, 2002, 51(10): 2197-2201. doi: 10.7498/aps.51.2197
    [17] LI ZHI-BIN, YAO RUO-XIA. EXPLICIT EXACT SOLUTIONS TO NONLINEARCOUPLED DIFFERENTIAL EQUATIONS. Acta Physica Sinica, 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [18] CHEN CHANG-YUAN, LIU YOU-WEN. THE EXACT SOLUTION OF ANHARMONIC OSCILLATOR POTENTIAL AND THE DESCRIPTION OF DOUBLE-WAVE FUNCTION. Acta Physica Sinica, 1998, 47(4): 536-541. doi: 10.7498/aps.47.536
    [19] SUN CHIA-CHUNG, KIANG TUNG-CHEN. THE PROBLEM OF THE VAN DER WAALS FORCES FOR A SYSTEM OF ASYMMETRIC TOP MOLECULES. Acta Physica Sinica, 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
    [20] . Acta Physica Sinica, 1936, 2(1): 15-21. doi: 10.7498/aps.2.15
Metrics
  • Abstract views:  4472
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2021
  • Accepted Date:  05 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回