Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A theoretical survey of two-dimensional coherent spectroscopy in strongly-correlated electronic systems

Li Zi-Long Wan Yuan

Citation:

A theoretical survey of two-dimensional coherent spectroscopy in strongly-correlated electronic systems

Li Zi-Long, Wan Yuan
PDF
HTML
Get Citation
  • Two-dimensional coherent spectroscopy (2DCS) diagnoses a material’s nonlinear optical response with multiple time variables, thus offering information that is inaccessible with conventional linear optical spectroscopy. The 2DCS in the infrared, visible, and ultraviolet frequency range has yielded fruitful results in chemistry and biology. In the terahertz (THz) frequency window, 2DCS has shown its promise in the study of strongly-correlated electronic systems. As a guide to this rapidly developing field, we survey the current status of the theory of THz-2DCS in strongly-correlated electronic systems. We then introduce the basic concepts and theoretical methods of 2DCS, and analyze the main characteristics of the two-dimensional spectra. Finally, we summarize our latest theoretical research in this field.
      Corresponding author: Wan Yuan, yuan.wan@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974396) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020300)
    [1]

    Mukamel S 1999 Principle of Nonlinear Optical Spectroscopy (Oxford: Oxford University Press) pp3–139

    [2]

    Hamm P, Zanni M 2011 Concepts and Methods of 2D Infrared Spectroscopy (Cambridge: Cambridge University Press) pp1–86

    [3]

    翁宇翔, 陈海龙 2018 超快激光光谱原理与技术基础 (北京: 化学工业出版社)

    Weng Y X, Chen H L 2018 Ultrafast Spectroscopy-Principles and Techniques (Beijing : Chemical Industry Press) (in Chinese)

    [4]

    Cundiff S, Mukamel S 2013 Phys. Today 66 44Google Scholar

    [5]

    Hüfner S, Hossain M A, Damascelli A, Sawatzky1 G A 2008 Rep. Prog. Phys. 71 062501Google Scholar

    [6]

    Breunig O, Garst M, Sela E, Buldmann B, Becker P, Bohaty L, Muller R, Lorenz T 2013 Phys. Rev. Lett. 111 187202Google Scholar

    [7]

    Bitko D, Rosenbaum T F, Aeppli G 1996 Phys. Rev. Lett. 77 940Google Scholar

    [8]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P, Kiefer K 2010 Science 327 177Google Scholar

    [9]

    Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2010 Science 329 5992Google Scholar

    [10]

    Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T 2013 New J. Phys. 15 025039Google Scholar

    [11]

    Lu J, Li X, Hwang H Y, Ofori-Okai B K, Kurihara T, Suemoto T, Nelson K A 2017 Phys. Rev. Lett. 118 207204Google Scholar

    [12]

    Mahmood F, Chaudhuri D, Gopalakrishnan S, Nandkishore R, Armitage N P 2021 Nat. Phys. 17 627Google Scholar

    [13]

    Wan Y, Armitage N P 2018 Phys. Rev. Lett. 122 257401Google Scholar

    [14]

    Choi W, Lee K H, Kim Y B 2020 Phys. Rev. Lett. 124 117205Google Scholar

    [15]

    Nandkishore R M, Choi W, Kim Y B 2021 Phys. Rev. Res. 3 013254Google Scholar

    [16]

    Parameswaran S A, Gopalakrishnan S 2020 Phys. Rev. Lett. 125 237601Google Scholar

    [17]

    Phuc N T, Trung P Q 2021 Phys. Rev. B 104 115105Google Scholar

    [18]

    Li Z L, Oshikawa M, Wan Y 2021 Phys. Rev. X 11 031035Google Scholar

    [19]

    Hamm P, Meuwl M, Johnson S L, Beaud P 2017 Struc. Dyn. 4 061601Google Scholar

    [20]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [21]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [22]

    Abella I D, Kurnit N A, Hartmann S R 1966 Phys. Rev. 141 391Google Scholar

    [23]

    Pfeuty P 1970 Ann. Phys. 57 79Google Scholar

    [24]

    Anderson P W 1984 Basic Notations of Condensed Matter Physics (Benjamin Cummings) pp92–104

    [25]

    Zvezdin A, Kotov V 1997 Modern Magnetooptics and Magnetooptical Materials (New York: Taylor & Francis)

    [26]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407Google Scholar

    [27]

    Affleck I 1988 Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena pp563–640

    [28]

    Giamarchi T 2003 Quantum Physics in One Dimension (Oxford: Oxford University Press)

    [29]

    von Delft J, Schoeller H 1998 Ann. Phys. 7 225Google Scholar

    [30]

    Shankar R 1993 Acta Phys. Polonica B 26 12Google Scholar

    [31]

    Pham K V, Gabay M, Lederer P 2000 Phys. Rev. B 61 16397Google Scholar

    [32]

    Kamenev A 2011 Field Theory of Non-Equilibrium Systems (Cambridge: Cambridge University Press)

    [33]

    Sachdev S, Young A P 1997 Phys. Rev. Lett. 78 2220Google Scholar

    [34]

    Damle K, Sachdev S 1998 Phys. Rev. B 57 8307Google Scholar

    [35]

    Damle K, Sachdev S 1998 Phys. Rev. Lett. 95 187201Google Scholar

  • 图 1  线性响应的刘维尔路径. $R_1$对应的路径为图中的红色实线

    Figure 1.  Liouville paths of linear responce. $R_1$ is illustrated by the solid red line.

    图 2  一个典型的脉冲序列

    Figure 2.  A prototypical pulse sequence.

    图 3  非线性响应的刘维尔路径.$R_1$由图中红色实线表示

    Figure 3.  Liouville paths of non-linear responce. $R_1$ is illustrated by the solid red line.

    图 4  横场伊辛模型铁磁相[$h/(h+J)=0.3$]的一维和二维光谱. 从上到下, (a)−(e)无耗散的结果$(1/T_{1, 2}=0)$; (f)−(j)有耗散的结果$(1/T_{1, 2}=0.2(J+h))$; (k)−(o)添加无序后的结果. 从左到右, 每列分别是${\boldsymbol{\chi}}^{(1)}_{xx}(\omega)$, 以及${\boldsymbol{\chi}}^{(2)}_{xxx}(t, t+\tau), \; {\boldsymbol{\chi}}^{(3)}_{xxxx}\times $$ (t, t+\tau, t+\tau),\; {\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t, t+\tau)$的傅里叶变换, 以及沿着黑色箭头方向的信号轮廓(本图来自文献[13])

    Figure 4.  One dimensional (1D) and two dimensional (2D) spectra in the FM phase [$h/(h+J)=0.3$] of the TFIC. From the top to bottom, the rows show (a)−(e) the case with no dissipation $(1/T_{1, 2}=0)$, (f)−(j) with dissipation $(1/T_{1, 2}=0.2(J+h))$, and (k)−(o) with quenched disorder. From the left to right, the columns show, respectively, ${\boldsymbol{\chi}}^{(1)}_{xx}(\omega)$, and the FTs of ${\boldsymbol{\chi}}^{(2)}_{xxx}(t, t+\tau)$, ${\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t+\tau, t+\tau), \;{\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t, t+\tau)$, and its profile along a cut indicated by the black arrow. (This figure is reprinted from ref. [13])

    图 5  脉冲序列 (a)${\boldsymbol{\chi}}_{xxxx}^{(3)}(t_3, t_3+t_2, t_3+t_2+t_1)$对应的三脉冲过程以及“自旋子”回波过程$A_k^{(4)}$对应的刘维尔路径; (b) 作为三脉冲极限的两脉冲序列下的三阶响应${\boldsymbol{\chi}}^{(3)}$ (本图来自文献[13])

    Figure 5.  Pulse sequences: (a) Three-pulse process associated with ${\boldsymbol{\chi}}_{xxxx}^{(3)}(t_3, t_3+t_2, t_3+t_2+t_1)$. The spinon echo process that produces the rephasing signal $A_k^{(4)}$ is also shown. (b) The ${\boldsymbol{\chi}}^{(3)}$ terms measured in the two-pulse setup are special limits of the three-pulse process. (This figure is reprinted from ref. [13])

    图 6  (a) 法拉第构型示意图. 磁场沿$z$方向. 3个圆偏振短光脉冲通过自旋模型, 传播方向平行于$z$方向. 第1个光脉冲为右旋偏振, 第2和第3个光脉冲为左旋偏振. 第1和第2个光脉冲的时间间隔为$\tau$, 第2和第3个光脉冲的时间间隔为$t_w$, 第三个光脉冲和测量时间的时间间隔为$t$. (b) $t\approx \tau$时, 光子回波信号出现(本图来自文献[18])

    Figure 6.  (a) The Faraday configuration. A magnetic field B is applied in the z axis. Three short electromagnetic pulses with circular polarizations pass through the S = 1/2 spin chain. The propagation direction is parallel with the spin z axis. The first pulse is right-handed, whereas the second and the third are left-handed. The time delay between the first and the second pulse is denoted by $\tau$, the second and the third by $t_w$, and the third pulse and the time of detection by $t$. (b) When $ t\approx\tau $ , photon echo appears. (This figure is reprinted from ref. [18])

    图 7  (a) 以$\pi Tt, \pi T \tau$为自变量, 铁磁链的三阶非线性响应${\boldsymbol{\chi}}_{+--+}^{(3)}$. 固定$\pi Tt_w=1$, 拉廷格参数$K=1$. (b), (c) 分别是图(a)中数据傅里叶变换后二维光谱的实部和虚部(本图来自文献[18])

    Figure 7.  (a) Nonlinear magnetic susceptibility ${\boldsymbol{\chi}}_{+--+}^{(3)}$ of a ferromagnetic chain as function of $\pi Tt$ and $\pi T\tau$. The waiting time $\pi T t_w=1$. The Luttinger parameter is $K=1$. (b), (c) The real and imaginary parts of two dimensional spectrum, obtained by Fourier transforming the data of panel (a). (This figure is reprinted from Ref. [18])

    图 8  (a), (b) 以$\pi Tt, \;\pi T \tau$为自变量, 反铁磁链的三阶非线性响应${\boldsymbol{\chi}}_{+--+}^{(3)}$的实部和虚部. 固定$\pi Tt_w=1$, 拉廷格参数$K=1$, 磁化密度$2 mu/T=1.15$. (c), (d) 分别是二维相干光谱的实部和虚部(本图来自文献[18])

    Figure 8.  (a), (b) The real and imaginary parts of Nonlinear magnetic susceptibility ${\boldsymbol{\chi}}_{+--+}^{(3)}$ of an antiferromagnetic chain as function of $\pi Tt$ and $\pi T\tau$. The waiting time $\pi T t_w=1$. The Luttinger parameter is $K=1$. The magnetization density$2 mu/T=1.15$. (c), (d) The real and imaginary parts of the two-dimensional spectrum. (This figure is reprinted from Ref. [18])

    图 9  (a) 两点关联函数中的“自旋子”产生湮灭过程. 实线代表“自旋子”的动力学过程. 虚线代表“反自旋子”的动力学过程. (b) 四点关联函数中的“自旋子”产生湮灭过程. (c) 四点关联函数中的“透镜效应”构型. (d) $\tilde{{\boldsymbol{\chi}}}_{+--+}^{(3)}$在图(c)阴影部分的行为(本图来自文献[18])

    Figure 9.  (a) The spinon creation/annihilation process in two-point correlation function. Solid and dashed lines represent dynamical processes of spinon and antispinon respectively. (b) The spinon creation/annihilation process in four-point correlation function. (c) The “Lensing” configuration in four-point correlation function. (d) The behavior of the shaded area in panel (c). (This figure is reprinted from ref. [18])

  • [1]

    Mukamel S 1999 Principle of Nonlinear Optical Spectroscopy (Oxford: Oxford University Press) pp3–139

    [2]

    Hamm P, Zanni M 2011 Concepts and Methods of 2D Infrared Spectroscopy (Cambridge: Cambridge University Press) pp1–86

    [3]

    翁宇翔, 陈海龙 2018 超快激光光谱原理与技术基础 (北京: 化学工业出版社)

    Weng Y X, Chen H L 2018 Ultrafast Spectroscopy-Principles and Techniques (Beijing : Chemical Industry Press) (in Chinese)

    [4]

    Cundiff S, Mukamel S 2013 Phys. Today 66 44Google Scholar

    [5]

    Hüfner S, Hossain M A, Damascelli A, Sawatzky1 G A 2008 Rep. Prog. Phys. 71 062501Google Scholar

    [6]

    Breunig O, Garst M, Sela E, Buldmann B, Becker P, Bohaty L, Muller R, Lorenz T 2013 Phys. Rev. Lett. 111 187202Google Scholar

    [7]

    Bitko D, Rosenbaum T F, Aeppli G 1996 Phys. Rev. Lett. 77 940Google Scholar

    [8]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P, Kiefer K 2010 Science 327 177Google Scholar

    [9]

    Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2010 Science 329 5992Google Scholar

    [10]

    Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T 2013 New J. Phys. 15 025039Google Scholar

    [11]

    Lu J, Li X, Hwang H Y, Ofori-Okai B K, Kurihara T, Suemoto T, Nelson K A 2017 Phys. Rev. Lett. 118 207204Google Scholar

    [12]

    Mahmood F, Chaudhuri D, Gopalakrishnan S, Nandkishore R, Armitage N P 2021 Nat. Phys. 17 627Google Scholar

    [13]

    Wan Y, Armitage N P 2018 Phys. Rev. Lett. 122 257401Google Scholar

    [14]

    Choi W, Lee K H, Kim Y B 2020 Phys. Rev. Lett. 124 117205Google Scholar

    [15]

    Nandkishore R M, Choi W, Kim Y B 2021 Phys. Rev. Res. 3 013254Google Scholar

    [16]

    Parameswaran S A, Gopalakrishnan S 2020 Phys. Rev. Lett. 125 237601Google Scholar

    [17]

    Phuc N T, Trung P Q 2021 Phys. Rev. B 104 115105Google Scholar

    [18]

    Li Z L, Oshikawa M, Wan Y 2021 Phys. Rev. X 11 031035Google Scholar

    [19]

    Hamm P, Meuwl M, Johnson S L, Beaud P 2017 Struc. Dyn. 4 061601Google Scholar

    [20]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [21]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [22]

    Abella I D, Kurnit N A, Hartmann S R 1966 Phys. Rev. 141 391Google Scholar

    [23]

    Pfeuty P 1970 Ann. Phys. 57 79Google Scholar

    [24]

    Anderson P W 1984 Basic Notations of Condensed Matter Physics (Benjamin Cummings) pp92–104

    [25]

    Zvezdin A, Kotov V 1997 Modern Magnetooptics and Magnetooptical Materials (New York: Taylor & Francis)

    [26]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407Google Scholar

    [27]

    Affleck I 1988 Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena pp563–640

    [28]

    Giamarchi T 2003 Quantum Physics in One Dimension (Oxford: Oxford University Press)

    [29]

    von Delft J, Schoeller H 1998 Ann. Phys. 7 225Google Scholar

    [30]

    Shankar R 1993 Acta Phys. Polonica B 26 12Google Scholar

    [31]

    Pham K V, Gabay M, Lederer P 2000 Phys. Rev. B 61 16397Google Scholar

    [32]

    Kamenev A 2011 Field Theory of Non-Equilibrium Systems (Cambridge: Cambridge University Press)

    [33]

    Sachdev S, Young A P 1997 Phys. Rev. Lett. 78 2220Google Scholar

    [34]

    Damle K, Sachdev S 1998 Phys. Rev. B 57 8307Google Scholar

    [35]

    Damle K, Sachdev S 1998 Phys. Rev. Lett. 95 187201Google Scholar

  • [1] Ji Zhe, Yan Ying-Zhan, Jia Da-Gong. Two-dimensional coherent optical en/decoder based on serially coupled dumbbell microring resonator. Acta Physica Sinica, 2022, 71(1): 014206. doi: 10.7498/aps.71.20200057
    [2] Xu Xiao-Yan. Quantum Monte Carlo study of strongly correlated electrons. Acta Physica Sinica, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [3] Two-Dimensional Coherent Optical En/Decoder Based On The Serially Coupled Dumbbell Microring Resonator. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20200057
    [4] Bei Bang-Kun, Wang Hua-Guang, Zhang Ze-Xin. Two-dimensional crystallization in finite-sized colloidal systems. Acta Physica Sinica, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [5] Weng Yu-Xiang, Wang Zhuan, Chen Hai-Long, Leng Xuan, Zhu Rui-Dan. Quantum coherence measurement with femtosecond time-resolve two-dimensional electronic spectroscopy: principles, applications and outlook. Acta Physica Sinica, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [6] Liu Hai-Xia, Chen Ke, Hou Mei-Ying. Boson peaks in doped colloid glasses. Acta Physica Sinica, 2015, 64(11): 116302. doi: 10.7498/aps.64.116302
    [7] Xu Yan, Fan Wei, Chen Bing, Nan Xiang-Hong, Chen Da, Zhou Qiang, Zhang Lu-Yin. Density-density correlation in quasi two-dimensional free expanding Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [8] Zheng Jian-Zhou, Yu Qing-Xu, Guan Shou-Hua, Dong Bin, Cao Xiao-Jun, Lu Yong-Jun, Wu Yun-Feng. Two-dimensional performance of uniform irradiation with the use of a concentricity deviation lens array and partially coherent light. Acta Physica Sinica, 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [9] Xu Si-Liu, Liu Hui-Ping, Yi Lin. Two-dimensional Kummer-Gaussian soliton clusters in strongly nonlocal nonlinear media. Acta Physica Sinica, 2010, 59(2): 1069-1074. doi: 10.7498/aps.59.1069
    [10] Eerdunchaolu. Influences of temperature and polaron effect on the ground state of quasi-two-dimensional strong-coupling exciton. Acta Physica Sinica, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [11] Ma Song-Shan, Xu Hui, Li Yan-Feng, Zhang Peng-Hua. Characteristic of alternating current hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [12] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Wang Huan-You. Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [13] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [14] WANG ZHONG-YANG, GONG SHANG-QING, XU ZHI-ZHAN. ATTOSECOND LIGHT PULSE GENERATION IN A STRONGLY DRIVEN TWO-LEVEL ATOM. Acta Physica Sinica, 1999, 48(5): 961-965. doi: 10.7498/aps.48.961
    [15] LIU JING-NAN, SUN XIN. ELECTRON CORRELATION AND TWO-DIMENSIONAL LATTICE INSTABILITY. Acta Physica Sinica, 1992, 41(1): 80-86. doi: 10.7498/aps.41.80
    [16] JIANG MENG-HENG, LIN FU-CHENG. THE PROPAGATION EFFECT OF COHERENT PULSE IN THE STRONG LOSS MEDIUM. Acta Physica Sinica, 1990, 39(12): 1887-1892. doi: 10.7498/aps.39.1887
    [17] MAO HUI-MING, SHAO JIN-SHAN, WANG HONG-WEI, FENG WEI-GUO, SUN XIN. VARIATIONAL CALCULATION FOR ELECTRON CORRELA-TIONS OF QUASI ONE-DIMENSIONAL SYSTEM. Acta Physica Sinica, 1990, 39(3): 446-456. doi: 10.7498/aps.39.446
    [18] XIONG XIAO-MING. THE CORRELATION FUNCTION OF TWO DIMENSIONAL ELECTRON GAS. Acta Physica Sinica, 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [19] FENG WEI-GUO, SUN XIN. THE ELECTRON CORRELATION FUNCTION OF QUASI ONE-DIMENSIONAL SYSTEM. Acta Physica Sinica, 1987, 36(9): 1133-1140. doi: 10.7498/aps.36.1133
    [20] MU GUO-GUANG, KANG HUI, LI ZHENG-MING. THE ELIMINATION OF BRIGHT CONTINUOUS SPECTRAL BACKGROUND IN SPECTROGRAM BY MEANS OF COHERENT OPTICAL PROCESSING. Acta Physica Sinica, 1980, 29(6): 794-798. doi: 10.7498/aps.29.794
Metrics
  • Abstract views:  5729
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2021
  • Accepted Date:  30 September 2021
  • Available Online:  28 October 2021
  • Published Online:  05 December 2021

/

返回文章
返回