Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Boson peaks in doped colloid glasses

Liu Hai-Xia Chen Ke Hou Mei-Ying

Citation:

Boson peaks in doped colloid glasses

Liu Hai-Xia, Chen Ke, Hou Mei-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We experimentally investigated the correlation between local structures and phonon modes in quasi-2D colloidal glasses. The glass samples consist of thermo-sensitive poly-N-isopropylacrylamide microgel (PNIPAM) particles, whose diameter can be tuned by small changes of sample temperature. A binary mixture of these particles is confined between two coverslips and forms a monolayer of quasi-2D glass. By changing the number ratio between large and small particles, the structure or the overall degree of disorder of the samples can be systematically tuned. We employ a video microscopy to record the motion of the colloidal particles in the sample for 11 min at a rate of 60 fps. The trajectories of individual particles are obtained by particle tracking software. Dynamical matrix is constructed using covariance matrix analysis, from which the eigenfrequency and eigenvector of vibrations are extracted. In this study, we focus on the evolution of the low-frequency quasi-localized phonon modes in glasses, as the system becomes more and more disordered from the increased dopants. To compare the results from different samples, we choose those with packing fraction of 86%, and rescale the eigenfrequencies by the median frequency of each sample. For the four doping levels investigated (2%, 9%, 29%, 61%), the density of states at low frequencies increases with the doping level, suggesting that the fraction of low-frequency modes increases with disorder, which is corroborated by the higher boson peaks at higher dopant fractions. We have measured the participation ratio of the obtained phonon modes, and find that the boson peak corresponds to quasi-localized vibration modes, or soft modes. We also examine the correlation between the soft modes and local structural parameter. Specifically, we have calculated the local orientational order parameter in our samples, and computed the correlation coefficients between the relative amplitude and the local orientational order parameter for each mode. The soft modes are found to have a significantly negative correlation with the local orientational order parameter, which implies that the soft modes are concentrated in regions with poor local order. We therefore conclude that the local disorder is probably the structural origin of soft modes in glasses.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11034010), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474327), the Special Fund for Earthquake Research of China (Grant No. 201208011), the Chinese Academy of Sciences “Strategic Priority Research Program-SJ-10” (Grant No. XDA04020200), and “The Recruitment Program of Global Youth Experts”.
    [1]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [2]

    Chen K, Ellenbroek W G, Zhang Z X, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [3]

    Liu H M, Lu C L, Wang K F, Liu J M, Wang Q, Dong C 2010 Chin. Phys. B 19 017102

    [4]

    Pohl R O, Liu X, Thompson E 2002 Rev. Mod. Phys. 74 991

    [5]

    Zhang Z X, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [6]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [7]

    Kaya D, Green N L, Maloney C E, Islam M F 2010 Science 329 656

    [8]

    Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parliński K, Jochym P, Piekarz P 2011 Phys. Rev. Lett. 106 225501

    [9]

    Graebner J E, Golding B 1979 Phys. Rev. B 19 964

    [10]

    Xu N 2011 Front. Phys. China 6 109

    [11]

    Souslov A, Liu A J, Lubensky T C 2009 Phys. Rev. Lett. 103 205503

    [12]

    Mao X M, Xu N, Lubensky T C 2010 Phys. Rev. Lett. 104 085504

    [13]

    Hiltner P A, Krieger I M 1969 J. Phys. Chem. 73 2386

    [14]

    Hiltner P A, Papir Y S, Krieger I M 1971 J. Phys. Chem. 75 1881

    [15]

    Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S 1973 J. Colloid Interface Sci. 44 330

    [16]

    Lu K Q, Liu J X 2006 Introduction to soft Matter Physics (Beijing:Pecking University Press) p309 (in Chinese) [陆坤全, 刘寄星 2006 软物质物理学导论(北京:北京大学出版社) 第309页]

    [17]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [18]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [19]

    Shintani H, Tanaka H 2006 Nature Phys. 2 200

    [20]

    Saunders B R, Vincent B 1999 Adv. Colloid Interface Sci. 80 1

    [21]

    Pelton R 2000 Adv. Colloid Interface Sci. 85 1

    [22]

    Still T, Chen K, Alsayed A M, Aptowicz K B, Yodh A G 2013 J. Colloid Interface Sci. 405 96

    [23]

    Wyart M 2005 Ann. Phys. (Paris) 30 1

    [24]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [25]

    Wyart M, Liang H, Kabla A, Mahadevan L 2008 Phys. Rev. Lett. 101 215501

    [26]

    Crocker J C, Grier D G 1996 J. Colloid Interface Sci. 179 298

    [27]

    Yunker P, Chen K, Zhang Z X, Yodh A G 2011 Phys. Rev. Lett. 106 225503

    [28]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [29]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

  • [1]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [2]

    Chen K, Ellenbroek W G, Zhang Z X, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [3]

    Liu H M, Lu C L, Wang K F, Liu J M, Wang Q, Dong C 2010 Chin. Phys. B 19 017102

    [4]

    Pohl R O, Liu X, Thompson E 2002 Rev. Mod. Phys. 74 991

    [5]

    Zhang Z X, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230

    [6]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [7]

    Kaya D, Green N L, Maloney C E, Islam M F 2010 Science 329 656

    [8]

    Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parliński K, Jochym P, Piekarz P 2011 Phys. Rev. Lett. 106 225501

    [9]

    Graebner J E, Golding B 1979 Phys. Rev. B 19 964

    [10]

    Xu N 2011 Front. Phys. China 6 109

    [11]

    Souslov A, Liu A J, Lubensky T C 2009 Phys. Rev. Lett. 103 205503

    [12]

    Mao X M, Xu N, Lubensky T C 2010 Phys. Rev. Lett. 104 085504

    [13]

    Hiltner P A, Krieger I M 1969 J. Phys. Chem. 73 2386

    [14]

    Hiltner P A, Papir Y S, Krieger I M 1971 J. Phys. Chem. 75 1881

    [15]

    Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S 1973 J. Colloid Interface Sci. 44 330

    [16]

    Lu K Q, Liu J X 2006 Introduction to soft Matter Physics (Beijing:Pecking University Press) p309 (in Chinese) [陆坤全, 刘寄星 2006 软物质物理学导论(北京:北京大学出版社) 第309页]

    [17]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [18]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [19]

    Shintani H, Tanaka H 2006 Nature Phys. 2 200

    [20]

    Saunders B R, Vincent B 1999 Adv. Colloid Interface Sci. 80 1

    [21]

    Pelton R 2000 Adv. Colloid Interface Sci. 85 1

    [22]

    Still T, Chen K, Alsayed A M, Aptowicz K B, Yodh A G 2013 J. Colloid Interface Sci. 405 96

    [23]

    Wyart M 2005 Ann. Phys. (Paris) 30 1

    [24]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [25]

    Wyart M, Liang H, Kabla A, Mahadevan L 2008 Phys. Rev. Lett. 101 215501

    [26]

    Crocker J C, Grier D G 1996 J. Colloid Interface Sci. 179 298

    [27]

    Yunker P, Chen K, Zhang Z X, Yodh A G 2011 Phys. Rev. Lett. 106 225503

    [28]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [29]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

  • [1] Qin Jian. Investigation of Gaussian boson sampling under phase noise of the light source. Acta Physica Sinica, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] He Li, Zhang Tian-Qi, Li Ke-Xin, Yu Zeng-Qiang. Miscibility of dual-species Bose-Einstein condensates. Acta Physica Sinica, 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [3] Wang Qing-Qing, Zhou Yu-Shan, Wang Jing, Fan Xiao-Bei, Shao Kai-Hua, Zhao Yue-Xing, Song Yan, Shi Yu-Ren. Surface gap solitons and their stabilities in quasi-1D Bose-Einstein condensate with three-body interactions. Acta Physica Sinica, 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [4] Tang Na, Yang Xue-Ying, Song Lin, Zhang Juan, Li Xiao-Lin, Zhou Zhi-Kun, Shi Yu-Ren. Gap solitons and their stabilities in a quasi one-dimensional Bose-Einstein condensate under three-body interaction. Acta Physica Sinica, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [5] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [6] Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin. Glass transition in binary mixture of colloidal ellipsoids and spheres. Acta Physica Sinica, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [7] Niu Xiao-Na, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Dong Yuan-Xiang. Vibrational density of states and boson peak in two-dimensional frictional granular assemblies. Acta Physica Sinica, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [8] Xu Yan, Fan Wei, Chen Bing, Nan Xiang-Hong, Chen Da, Zhou Qiang, Zhang Lu-Yin. Density-density correlation in quasi two-dimensional free expanding Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [9] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [10] Wang Zhi-Xia, Zhang Xi-He, Shen Ke. Anti-control of chaos in Bose-Einstein condensate. Acta Physica Sinica, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [11] Xu Zhi-Jun, Wang Dong-Mei, Li Zhen. Interference of Bose-condensed gas in a 1D optical lattice. Acta Physica Sinica, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [12] Xu Xiu-Wei, Ren Ting-Qi, Chi Yong-Jiang, Zhu You-Liang, Liu Shu-Yan. Characteristic functions and quasi-probability distribution functions of multi-mode Bose quadratic polynomial system. Acta Physica Sinica, 2006, 55(8): 3892-3897. doi: 10.7498/aps.55.3892
    [13] Li Xing-Hua, Yang Ya-Tian. Boson expression of hydrogen atom eigenfunction. Acta Physica Sinica, 2005, 54(1): 12-17. doi: 10.7498/aps.54.12
    [14] HE YONG-JUN, SU HUI-MIN, TANG FANG-QIONG, DONG PENG, WANG HE-ZHOU. COLLOIDAL AMORPHOUS CRYSTAL WITH A QUASI-COMPLETE PHOTONIC BAND GAP . Acta Physica Sinica, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [15] LIU WEN-SEN, MA GUI-RONG, ZHANG JIU-AN, LIANG JIU-QING. SQUEEZED BOSON PAIR NUMBER STATES IN QUANTUM BOSE FLUID. Acta Physica Sinica, 1997, 46(9): 1699-1709. doi: 10.7498/aps.46.1699
    [16] HUANG HONG-BIN. COHERENT-STATE TREATMENT OF NONEQUILIBRIUM BOSE CONDENSATION. Acta Physica Sinica, 1993, 42(9): 1385-1394. doi: 10.7498/aps.42.1385
    [17] LI WEN-ZU, WU JIAN-BIN, CHEN FENG, CHENG KAI-JIA. QUASI-TWO DIMENSIONAL BOSE CONDENSATION AND HIGH-Tc SUPERCONDUCTIVITY. Acta Physica Sinica, 1989, 38(7): 1199-1204. doi: 10.7498/aps.38.1199
    [18] WANG GUO-LIANG. THE EFFECTS OF BOSE ELEMENTARY EXCITATIONS ON THE THERMAL PROPERTIES OF GLASSES AT LOW TEMPERATURES. Acta Physica Sinica, 1989, 38(6): 1005-1011. doi: 10.7498/aps.38.1005
    [19] LEI WEI-GUO, YIN BAO-ZHONG, HUNG XI-HAI. EXCITON SPECTRUM OF COLLOIDAL CuClxBr1-x(x=0-1) IN GLASSES. Acta Physica Sinica, 1986, 35(11): 1537-1541. doi: 10.7498/aps.35.1537
    [20] CAO ZHONG-SHENG, LIU FU-SUI, ZHAO ZHONG-XIAN. A MODEL OF QUASI-PARTICLE EXCITATION BY DISORDER CONFIGURATION FOR THE LOW TEMPERATURE ELECTRONIC RESISTIVITY IN METALLIC GLASS. Acta Physica Sinica, 1985, 34(5): 694-699. doi: 10.7498/aps.34.694
Metrics
  • Abstract views:  6552
  • PDF Downloads:  664
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2014
  • Accepted Date:  23 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回