Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibrational density of states and boson peak in two-dimensional frictional granular assemblies

Niu Xiao-Na Zhang Guo-Hua Sun Qi-Cheng Zhao Xue-Dan Dong Yuan-Xiang

Citation:

Vibrational density of states and boson peak in two-dimensional frictional granular assemblies

Niu Xiao-Na, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Dong Yuan-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the two-dimensional granular assemblies composed of 2048 mono-dispersed frictional disks are simulated by the discrete element method. A set of eigenvalues and corresponding eigenvectors is obtained by diagonalizing the Hessian matrix for each stable configuration. The effects of the friction coefficient of disk on mechanical and geometrical properties of these systems under isotropic confining are studied. Results show that at a fixed pressure, with increasing from 0.001 to 1.0, the crossover frequency *, which separates the Debye scale region from the platform of vibrational density of states, and the boson peak BP gradually shift towards lower frequency, and the intensity of the boson peak D(BP) / BP increases. These results are mainly attributed to the fact that the system becomes more and more disordered with the increase of (i.e., the decrease of the average coordination number), resulting in more excess modes at *. For a better understanding of the different vibration modes of the two-dimensional frictional granular systems, we plot the polarization vector diagrams for different frequencies ( 1 = 0.15, 2 = 1.5 and 3 = 6.0) for configurations with = 0.001 and = 1.0, respectively. Mode analysis results show that the mode at low ( 1.0) has a mixed translational-rotational but translational-dominated character; the mode at intermediate frequency (1.0 4.0) is localized and has a mixed translational-rotational but translational-dominated character; and the mode at high frequency ( 4.0) have a strongly rotational in character. It is worth noting that the low-frequency modes become more localized and the rotational participation fraction also increases as increases, implying that the rotational modes play more important role in the system with higher friction coefficient.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; Sun Qi-Cheng, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 51239006) and the European Commission Marie Curie Actions (Grant No. IRSES-294976).
    [1]

    OHern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [2]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [3]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [4]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [5]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [6]

    Zargar R, Russo J, Schall P, Tanaka H, Bonn D 2014 Europhys. Lett. 108 38002

    [7]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese) [刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [8]

    Schober H R, Laird B B 1991 Phys Rev. B 44 6746

    [9]

    Schober H R, Oligschleger C 1996 Phys Rev B 53 11469

    [10]

    Ruffl B, Parshin D A, Courtens E, Vacher R 2008 Phys. Rev. Lett. 100 015501

    [11]

    Tanguy A, Wittmer J P, Leonforte F, Barrat J L 2002 Phys. Rev. B 66 174205

    [12]

    Gurevich V L, Parshin D A, Schober H R 2003 Phys. Rev. B 67 094203

    [13]

    Elliott S R 1992 Europhys. Lett. 19 201

    [14]

    Wyart M, Silbert L E Nagel S R, Witten T A 2005 Phys. Rev. E 72 051306

    [15]

    Flores-Ruiz H M, Naumis G G 2011 Phys Rev B 83 184204

    [16]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [17]

    Leonforte F 2011 J. Non-Cryst. Solids 357 552

    [18]

    Premkumar L, Das S P 2015 Phys. Lett. A 379 1073

    [19]

    Feng X, Zhang G H, Sun Q C 2013 Acta Phys. Sin. 62 184501 (in Chinese) [冯旭, 张国华, 孙其诚 2013 物理学报 62 184501]

    [20]

    Xu N 2011 Front. Phys. China 6 109

    [21]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [22]

    Song C, Wang P, Makse H A 2008 Nature 453 629

    [23]

    Henkes S, Shundyak K, van Saarloos W, van Hecke M 2010 Soft Matter 6 2935

    [24]

    Stillinger F H Weber T A 1984 Science 225 4666

    [25]

    Gao G J, Bławzdziewicz J, OHern C S 2006 Phys. Rev. E 74 061304

    [26]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [27]

    Schreck C F Bertrand T, OHern C S, Shattuck M D 2011 Phys. Rev. Lett. 107 078301

    [28]

    Henkes S, van Hecke M, van Saarloos W 2010 Europhys. Lett. 90 14003

    [29]

    Goodrich C P, Liu A J, Nagel S R 2014 Nature Phys. 10 578

    [30]

    Srivastava D, Sarkar S K 2012 Phys. Rev. B 85 024206

    [31]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T, Yunker P J, Henkes S, Brito C, Dauchot O, van Saarloos W, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [32]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [33]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [34]

    Zeravcic Z, Xu N, Liu A J, Nagel S R, van Saarloos W 2009 Europhys. Lett. 87 26001

    [35]

    Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J, Yodh A G 2011 Phys. Rev. E 83 011403

    [36]

    Papanikolaou S, OHern C S, Shattuck M D 2013 Phys. Rev. Lett. 110 198002

  • [1]

    OHern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [2]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [3]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [4]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [5]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [6]

    Zargar R, Russo J, Schall P, Tanaka H, Bonn D 2014 Europhys. Lett. 108 38002

    [7]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese) [刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [8]

    Schober H R, Laird B B 1991 Phys Rev. B 44 6746

    [9]

    Schober H R, Oligschleger C 1996 Phys Rev B 53 11469

    [10]

    Ruffl B, Parshin D A, Courtens E, Vacher R 2008 Phys. Rev. Lett. 100 015501

    [11]

    Tanguy A, Wittmer J P, Leonforte F, Barrat J L 2002 Phys. Rev. B 66 174205

    [12]

    Gurevich V L, Parshin D A, Schober H R 2003 Phys. Rev. B 67 094203

    [13]

    Elliott S R 1992 Europhys. Lett. 19 201

    [14]

    Wyart M, Silbert L E Nagel S R, Witten T A 2005 Phys. Rev. E 72 051306

    [15]

    Flores-Ruiz H M, Naumis G G 2011 Phys Rev B 83 184204

    [16]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [17]

    Leonforte F 2011 J. Non-Cryst. Solids 357 552

    [18]

    Premkumar L, Das S P 2015 Phys. Lett. A 379 1073

    [19]

    Feng X, Zhang G H, Sun Q C 2013 Acta Phys. Sin. 62 184501 (in Chinese) [冯旭, 张国华, 孙其诚 2013 物理学报 62 184501]

    [20]

    Xu N 2011 Front. Phys. China 6 109

    [21]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [22]

    Song C, Wang P, Makse H A 2008 Nature 453 629

    [23]

    Henkes S, Shundyak K, van Saarloos W, van Hecke M 2010 Soft Matter 6 2935

    [24]

    Stillinger F H Weber T A 1984 Science 225 4666

    [25]

    Gao G J, Bławzdziewicz J, OHern C S 2006 Phys. Rev. E 74 061304

    [26]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [27]

    Schreck C F Bertrand T, OHern C S, Shattuck M D 2011 Phys. Rev. Lett. 107 078301

    [28]

    Henkes S, van Hecke M, van Saarloos W 2010 Europhys. Lett. 90 14003

    [29]

    Goodrich C P, Liu A J, Nagel S R 2014 Nature Phys. 10 578

    [30]

    Srivastava D, Sarkar S K 2012 Phys. Rev. B 85 024206

    [31]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T, Yunker P J, Henkes S, Brito C, Dauchot O, van Saarloos W, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [32]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [33]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [34]

    Zeravcic Z, Xu N, Liu A J, Nagel S R, van Saarloos W 2009 Europhys. Lett. 87 26001

    [35]

    Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J, Yodh A G 2011 Phys. Rev. E 83 011403

    [36]

    Papanikolaou S, OHern C S, Shattuck M D 2013 Phys. Rev. Lett. 110 198002

  • [1] Yu Tian-Lin, Fan Feng-Xian. Investigation of granular capillary rising under vertical vibration. Acta Physica Sinica, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [2] Du Qing-Xin, Sun Qi-Cheng, Ding Hong-Sheng, Zhang Guo-Hua, Fan Yan-Li, An Fei-Fei. Experimental study on bulk modulus and dissipation of dry and wet granular samples under vertical vibration. Acta Physica Sinica, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [3] Zhou Yi-Xian. Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law. Acta Physica Sinica, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [4] He Fei-Fei, Peng Zheng, Yan Xi-Ping, Jiang Yi-Min. Energy dissipation and periodic segregation of vibrated binary granular mixtures. Acta Physica Sinica, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [5] Liu Hai-Xia, Chen Ke, Hou Mei-Ying. Boson peaks in doped colloid glasses. Acta Physica Sinica, 2015, 64(11): 116302. doi: 10.7498/aps.64.116302
    [6] Zhang Fu-Weng, Wang Li, Liu Chuan-Ping, Wu Ping. The rising motion of grains in a vibrating pipe. Acta Physica Sinica, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [7] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Tong Chang-Jiang, Lu Xi-Cheng, Guo Wei-Jie. Mode analysis of 0.14 THz overmoded surface wave oscillator. Acta Physica Sinica, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [8] Peng Zheng, Jiang Yi-Min, Liu Rui, Hou Mei-Ying. Energy dissipation of a granular system under vertical vibration. Acta Physica Sinica, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] Huang De-Cai, Feng Yao-Dong, Xie Wei-Mei, Lu Ming, Wu Hai-Ping, Hu Feng-Lan, Deng Kai-Ming. Effect of particle density on the segregation of binary granular systems in a rotating drum. Acta Physica Sinica, 2012, 61(12): 124501. doi: 10.7498/aps.61.124501
    [10] Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song. Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters. Acta Physica Sinica, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] Jiang Ze-Hui, Jing Ya-Fang, Zhao Hai-Fa, Zheng Rui-Hua. Effects of subharmonic motion on size segregation in vertically vibrated granular materials. Acta Physica Sinica, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [12] Zheng He-Peng, Jiang Yi-Min. A nonlinear elastic analysis of static stress and lateral pressure coefficient for granular Couette systems. Acta Physica Sinica, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [13] Liang Xuan-Wen, Li Liang-Sheng, Hou Zhao-Guo, Lü Zhen, Yang Lei, Sun Gang, Shi Qing-Fan. Cycle of segregation patterns in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [14] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [15] Du Xue-Neng, Hu Lin, Kong Wei-Shu, Wang Wei-Ming, Wu Yu. On the nonlinear oscillation of internal sliding friction in particulate matter. Acta Physica Sinica, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [16] Jiang Ze-Hui, Wang Yun-Ying, Wu Jing. Motion modes of granular particles in a vibrating narrow tube. Acta Physica Sinica, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [17] Bao De-Song, Zhou Ying, Zhang Xun-Sheng, Tang Xiao-Wei. Dilute granular flow distribution near roughboundary on a two-dimensional inclined channel. Acta Physica Sinica, 2005, 54(3): 1279-1282. doi: 10.7498/aps.54.1279
    [18] Jiang Ze-Hui, Liu Xin-Ying, Peng Ya-Jing, Li Jian-Wei. Period doubling motion in vertically vibrated granular beds. Acta Physica Sinica, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [19] Jiang Ze-Hui, Li Bin, Zhao Hai-Fa, Wang Yun-Ying, Dai Zhi-Bin. Phenomena of impact bifurcations in vertically vibrated granular beds. Acta Physica Sinica, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] Jiang Ze-Hui, Lu Kun-Quan, Hou Mei-Ying, Chen Wei, Che n Xiang-Jun. Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
Metrics
  • Abstract views:  6247
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2015
  • Accepted Date:  05 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回